Download Free Investigation Of Aerosol Optical Properties On Regional Climate Forcing And Spatial And Temporal Distributions Of Aerosol And Ozone Associated With The Antarctic Polar Vortex Processes Book in PDF and EPUB Free Download. You can read online Investigation Of Aerosol Optical Properties On Regional Climate Forcing And Spatial And Temporal Distributions Of Aerosol And Ozone Associated With The Antarctic Polar Vortex Processes and write the review.

Keywords: aerosol, hygroscopic growth factor, black carbon, ozone depletion, polar stratospheric clouds.
Aerosols influence Earth's heat budget both directly by scattering and absorbing sunlight, and indirectly by acting as nuclei for cloud droplets. To reduce the uncertainties of current estimates of aerosol climate forcing, aerosol optical properties relevant to the computation of direct radiative forcing were measured at a regionally representative site near Mount Mitchell, North Carolina. On the basis of these measurements and model calculations, we have studied (1) the effects of relative humidity (RH) on aerosol optical properties and direct aerosol radiative forcing and (2) the influence of long-range transport on black carbon (BC) concentrations, its seasonal and weekly patterns, and the effects of BC on the regional climate of the southeastern US. The light scattering of aerosol is strongly dependent on RH at which it is measured, due to hygroscopic growth nature of most atmospheric aerosols. In this study, the hygroscopic growth factor (ratio of total scattering coefficient at RH=80% to that at RH=30%) was calculated to be almost constant value of 1.60 +/- 0.01 for polluted, marine, and continental air masses. In addition, it was found that as the RH increased from 30% to 80%, the backscatter fraction decreased by 23%. The patterns of direct radiative climate forcing by aerosols for various values of RH were similar for the three air masses, but the magnitudes of the forcing were larger for polluted air masses than for marine and continental air masses by a factor of nearly 2 due to higher sulfate concentration in polluted air masses. The averaged forcing for all the observed ambient RHs was -2.9 W m^( -2) (the negative forcing of -3.2 by aerosol scattering plus the positive forcing of +0.3 by aerosol absorption) for polluted air masses, -1.4 W m^( -2) ( -1.5 plus +0.1) for marine air masses, and -1.5 W m^( -2) ( -1.6 plus +0.1) for continental air masses. The BC mass concentration of the southeastern US showed the highest average concentration in polluted air mas.
The book is divided into two sections. The first section presents characterization of atmospheric aerosols and their impact on regional climate from East Asia to the Pacific. Ground-based, air-born, and satellite data were collected and analyzed. Detailed information about measurement techniques and atmospheric conditions were provided as well. In the second section, authors provide detailed information about the organic and inorganic constituents of atmospheric aerosols. They discuss the chemical and physical processes, temporal and spatial distribution, emissions, formation, and transportation of aerosol particles. In addition, new measurement techniques are introduced. This book hopes to serve as a useful resource to resolve some of the issues associated with the complex nature of the interaction between atmospheric aerosols and climatology.
Global climate change as a consequence of anthropogenic changes in the chemical composition of the atmosphere poses scientific questions of a nature and interdisciplinary scope that are unprecedented. Uncertainties in the climate forecast are large and thus far have hampered the establishment of a clear world plan for preventing or mitigating against unacceptable effects. The forecast of global and regional climate changes depends upon the development of a sound understanding of the factors that change the global heat balance and thus influence the climate. Changes in heat balance due to anthropogenic or externally imposed changes in the chemical composition of the atmosphere are referred to as forcings. While the uncertainties in the global mean greenhouse-gas forcing are not negligible (??? 15%), uncertainties in forcings by changes in the atmospheric aerosol and in clouds are much larger, and in some cases even include uncertainty in the sign of the forcing. Reductionist science, with its compartmentalized disciplines, has not coped effectively with the scientific problems of aerosols and their effects, largely because of a need for simultaneous consideration of chemical processes, chemical properties, physical properties, and a wide variety of physical processes and consequences. In the case of natural aerosols and their effects on clouds, it is even necessary to include studies of microbiology and of biochemistry. This volume ? the record of intense, interdisciplinary debate between atmospheric chemists, meteorologists, physicists, and biogeochemists - considers the subset of climate forcings due to atmospheric aerosols, with particular emphasis on integrating the necessary disciplinary components. It is truly unique in its interdisciplinary approach. The information contained in the overview papers and summary reports will be of interest to policymakers and scientists alike. Goal of this Dahlem Workshop to assess the controlling factors, geographic and temporal variations of the radiative properties of atmospheric aerosols, and to examine the extent to which their forcing through direct and indirect effects counteracts greenhouse-gas forcing on regional and global climate.
In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.Fox, Robert and Prins, Elaine Mae and Feltz, Joleen M.Goddard Space Flight CenterSIZE DISTRIBUTION; SPATIAL DISTRIBUTION; AEROSOLS
This Synthesis and Assessment Product (SAP) critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. The objectives of this report are: (1) to promote a consensus about the knowledge base for climate change decision support; and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols. Illustrations.
This book includes basic knowledge and understanding on the characteristics of aerosols over the continent and oceanic regions, their composition, residence times, sinks and size distributions, and their effects in the radiative transfer and climate of Earth.