Download Free Investigation Of A Space Propulsion Concept Using Inertial Electrostatic Confinement Book in PDF and EPUB Free Download. You can read online Investigation Of A Space Propulsion Concept Using Inertial Electrostatic Confinement and write the review.

Fusion energy is attractive for use in future spacecraft because of improved fuel energy density and reduced radioactivity compared with fission power. Unfortunately, the most promising means of generating fusion power on the ground (Tokamak based reactors like ITER and inertial confinement reactors like NIF) require very large and heavy structures for power supplies and magnets, in the case of magnetic confinement, or capacitors and lasers in the case of inertial confinement. The mass of these reactors and support equipment is sufficiently large that no existing or planned heavy-lift vehicle could launch such a reactor, thereby necessitating in-space construction which would substantially increase the cost of the endeavor. The scaling of Inertial Electrostatic Confinement (IEC) is such that high power densities might be achievable in small, light-weight reactors, potentially enabling more rapid, lower cost development of fusion power and propulsion systems for space applications. The primary focus of the research into improving particle and energy confinement in IEC systems is based on the idea of electrostatic ion focusing in a spherically symmetric gridded IEC system.
This work summarizes the state-of-the-art development of inertial electrostatic confinement (IEC) thruster, which can be divided into two parallel lines of development: the IEC plasma source and the corresponding electromagnetic nozzle (EMN). Both developing lines start from the establishment of the theory and modeling and evolve to the design implementation and experimental verification. The IEC discharge model highlights a novel perspective on the IEC discharge physics and the impacts of the respective critical parameters, which layouts the design for the IEC plasma source. Experimental verification for the theory is demonstrated via the optical emission spectroscopy and collision radiative model. The results provide conclusive evidence of forming a spherical double layer within the IEC plasma source, which is the key to establishing the proposed IEC discharge theory in this work. This work presents a comprehensive study on the magnetohydrodynamic theory for assessing the plasma acceleration in the magnetic nozzle. Nevertheless, the result shows a performance limitation of the magnetic nozzle. An innovative invention is proposed to overcome the limitation known as the EMN. Thorough descriptions of EMN and its working principle are summarized in this work, including its effects on plasma confinement, acceleration, and detachment. Investigation of the plasma plume properties by miscellaneous plasma diagnostics tools further demonstrates EMN functionality and constitutes the first IECT prototype with proof-of-concept in literature.
This book provides readers with an introductory understanding of Inertial Electrostatic Confinement (IEC), a type of fusion meant to retain plasma using an electrostatic field. IEC provides a unique approach for plasma confinement, as it offers a number of spin-off applications, such as a small neutron source for Neutron Activity Analysis (NAA), that all work towards creating fusion power. The IEC has been identified in recent times as an ideal fusion power unit because of its ability to burn aneutronic fuels like p-B11 as a result of its non-Maxwellian plasma dominated by beam-like ions. This type of fusion also takes place in a simple mechanical structure small in size, which also contributes to its viability as a source of power. This book posits that the ability to study the physics of IEC in very small volume plasmas makes it possible to rapidly investigate a design to create a power-producing device on a much larger scale. Along with this hypothesis the book also includes a conceptual experiment proposed for demonstrating breakeven conditions for using p-B11 in a hydrogen plasma simulation. This book also: Offers an in-depth look, from introductory basics to experimental simulation, of Inertial Electrostatic Confinement, an emerging method for generating fusion power Discusses how the Inertial Electrostatic Confinement method can be applied to other applications besides fusion through theoretical experiments in the text Details the study of the physics of Inertial Electrostatic Confinement in small-volume plasmas and suggests that their rapid reproduction could lead to the creation of a large-scale power-producing device Perfect for researchers and students working with nuclear fusion, Inertial Electrostatic Confinement (IEC) Fusion: Fundamentals and Applications also offers the current experimental status of IEC research, details supporting theories in the field and introduces other potential applications that stem from IEC.
Electrostatic Propulsion focuses on issues, trends, and developments in electrostatic propulsion. The compilation is composed of technical papers primarily based on the symposium of the American Rocket Society held at the U. S. Naval Postgraduate School in Monterey, California on November 3–4, 1960. The book presents an investigation of the performance of ion rockets employing electron-bombardment ion sources. It also underscores the value of duoplasmatron in ion propulsion. The compilation then looks at the development of a negative ion source. Calibration of mass spectrometer, description of ion source, and the theory of surface ionization are described. The book also discusses experiments on oscillating-electron plasma source; the theory of ion emission from porous media; and the effects of surface structure and adsorption on the ionization efficiency of a surface ionization source. The text also considers a number of experiments, including the space-charge theory for ion beams, circular beam neutralization, and transient and steady state behavior in cesium ion beams. The book is a good source of information for readers wanting to study electrostatic propulsion.
th th Mars, the Red Planet, fourth planet from the Sun, forever linked with 19 and 20 Century fantasy of a bellicose, intelligent Martian civilization. The romance and excitement of that fiction remains today, even as technologically sophisticated - botic orbiters, landers, and rovers seek to unveil Mars’ secrets; but so far, they have yet to find evidence of life. The aura of excitement, though, is justified for another reason: Mars is a very special place. It is the only planetary surface in the Solar System where humans, once free from the bounds of Earth, might hope to establish habitable, self-sufficient colonies. Endowed with an insatiable drive, focused motivation, and a keen sense of - ploration and adventure, humans will undergo the extremes of physical hardship and danger to push the envelope, to do what has not yet been done. Because of their very nature, there is little doubt that humans will in fact conquer Mars. But even earth-bound extremes, such those experienced by the early polar explorers, may seem like a walk in the park compared to future experiences on Mars.