Download Free Introduction To The Finite Element Method In Electromagnetics Book in PDF and EPUB Free Download. You can read online Introduction To The Finite Element Method In Electromagnetics and write the review.

"This is an introduction to the finite element method with applications in electromagnetics. Author Anastasis Polycarpou begins with the basics of the method, including formulating a boundary-value problem using a weighted-residual method and the Galerkin approach, followed by the imposition of all three types of boundary conditions, including absorbing boundary conditions. Another important topic of emphasis is the development of shape functions including those of higher order. This book provides the reader with all information necessary to apply the finite element method to one- and two-dimensional boundary-value problems in electromagnetics."--BOOK JACKET.
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.
Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.
Field Solutions on Computers covers a broad range of practical applications involving electric and magnetic fields. The text emphasizes finite-element techniques to solve real-world problems in research and industry. After introducing numerical methods with a thorough treatment of electrostatics, the book moves in a structured sequence to advanced topics. These include magnetostatics with non-linear materials, permanent magnet devices, RF heating, eddy current analysis, electromagnetic pulses, microwave structures, and wave scattering. The mathematical derivations are supplemented with chapter exercises and comprehensive reviews of the underlying physics. The book also covers essential supporting techniques such as mesh generation, interpolation, sparse matrix inversions, and advanced plotting routines.
Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem
Unlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​
This is the first monograph on the subject, providing a comprehensive introduction to the LSFEM method for numerical solution of PDEs. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics.
This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.
Since the middle of the last century, computing power has increased sufficiently that the direct numerical approximation of Maxwell's equations is now an increasingly important tool in science and engineering. Parallel to the increasing use of numerical methods in computational electromagnetism there has also been considerable progress in the mathematical understanding of the properties of Maxwell's equations relevant to numerical analysis. The aim of this book is to provide an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains. Suitable variational formulations are developed and justified mathematically. An error analysis of edge finite element methods that are particularly well suited to Maxwell's equations is the main focus of the book. The methods are justified for Lipschitz polyhedral domains that can cause strong singularities in the solution. The book finishes with a short introduction to inverse problems in electromagnetism.