Download Free Introduction To Reconfigurable Computing Book in PDF and EPUB Free Download. You can read online Introduction To Reconfigurable Computing and write the review.

This work is a comprehensive study of the field. It provides an entry point to the novice willing to move in the research field reconfigurable computing, FPGA and system on programmable chip design. The book can also be used as teaching reference for a graduate course in computer engineering, or as reference to advance electrical and computer engineers. It provides a very strong theoretical and practical background to the field, from the early Estrin’s machine to the very modern architecture such as embedded logic devices.
Reconfigurable Computing marks a revolutionary and hot topic that bridges the gap between the separate worlds of hardware and software design— the key feature of reconfigurable computing is its groundbreaking ability to perform computations in hardware to increase performance while retaining the flexibility of a software solution. Reconfigurable computers serve as affordable, fast, and accurate tools for developing designs ranging from single chip architectures to multi-chip and embedded systems. Scott Hauck and Andre DeHon have assembled a group of the key experts in the fields of both hardware and software computing to provide an introduction to the entire range of issues relating to reconfigurable computing. FPGAs (field programmable gate arrays) act as the "computing vehicles to implement this powerful technology. Readers will be guided into adopting a completely new way of handling existing design concerns and be able to make use of the vast opportunities possible with reconfigurable logic in this rapidly evolving field. - Designed for both hardware and software programmers - Views of reconfigurable programming beyond standard programming languages - Broad set of case studies demonstrating how to use FPGAs in novel and efficient ways
As the complexity of modern embedded systems increases, it becomes less practical to design monolithic processing platforms. As a result, reconfigurable computing is being adopted widely for more flexible design. Reconfigurable Computers offer the spatial parallelism and fine-grained customizability of application-specific circuits with the postfabrication programmability of software. To make the most of this unique combination of performance and flexibility, designers need to be aware of both hardware and software issues. FPGA users must think not only about the gates needed to perform a computation but also about the software flow that supports the design process. The goal of this book is to help designers become comfortable with these issues, and thus be able to exploit the vast opportunities possible with reconfigurable logic.
A one-of-a-kind survey of the field of Reconfigurable Computing Gives a comprehensive introduction to a discipline that offers a 10X-100X acceleration of algorithms over microprocessors Discusses the impact of reconfigurable hardware on a wide range of applications: signal and image processing, network security, bioinformatics, and supercomputing Includes the history of the field as well as recent advances Includes an extensive bibliography of primary sources
Reconfigurable systems have pervaded nearly all fields of computation and will continue to do so for the foreseeable future. Reconfigurable System Design and Verification provides a compendium of design and verification techniques for reconfigurable systems, allowing you to quickly search for a technique and determine if it is appropriate to the task at hand. It bridges the gap between the need for reconfigurable computing education and the burgeoning development of numerous different techniques in the design and verification of reconfigurable systems in various application domains. The text explains topics in such a way that they can be immediately grasped and put into practice. It starts with an overview of reconfigurable computing architectures and platforms and demonstrates how to develop reconfigurable systems. This sets up the discussion of the hardware, software, and system techniques that form the core of the text. The authors classify design and verification techniques into primary and secondary categories, allowing the appropriate ones to be easily located and compared. The techniques discussed range from system modeling and system-level design to co-simulation and formal verification. Case studies illustrating real-world applications, detailed explanations of complex algorithms, and self-explaining illustrations add depth to the presentation. Comprehensively covering all techniques related to the hardware-software design and verification of reconfigurable systems, this book provides a single source for information that otherwise would have been dispersed among the literature, making it very difficult to search, compare, and select the technique most suitable. The authors do it all for you, making it easy to find the techniques that fit your system requirements, without having to surf the net or digital libraries to find the candidate techniques and compare them yourself.
The basic concepts and building blocks for the design of Fine- (or FPGA) and Coarse-Grain Reconfigurable Architectures are discussed in this book. Recently-developed integrated architecture design and software-supported design flow of FPGA and coarse-grain reconfigurable architecture are also described.
New Algorithms, Architectures and Applications for Reconfigurable Computing consists of a collection of contributions from the authors of some of the best papers from the Field Programmable Logic conference (FPL’03) and the Design and Test Europe conference (DATE’03). In all, seventy-nine authors, from research teams from all over the world, were invited to present their latest research in the extended format permitted by this special volume. The result is a valuable book that is a unique record of the state of the art in research into field programmable logic and reconfigurable computing. The contributions are organized into twenty-four chapters and are grouped into three main categories: architectures, tools and applications. Within these three broad areas the most strongly represented themes are coarse-grained architectures; dynamically reconfigurable and multi-context architectures; tools for coarse-grained and reconfigurable architectures; networking, security and encryption applications. Field programmable logic and reconfigurable computing are exciting research disciplines that span the traditional boundaries of electronic engineering and computer science. When the skills of both research communities are combined to address the challenges of a single research discipline they serve as a catalyst for innovative research. The work reported in the chapters of this book captures that spirit of that innovation.
This is the first book to focus on designing run-time reconfigurable systems on FPGAs, in order to gain resource and power efficiency, as well as to improve speed. Case studies in partial reconfiguration guide readers through the FPGA jungle, straight toward a working system. The discussion of partial reconfiguration is comprehensive and practical, with models introduced together with methods to implement efficiently the corresponding systems. Coverage includes concepts for partial module integration and corresponding communication architectures, floorplanning of the on-FPGA resources, physical implementation aspects starting from constraining primitive placement and routing all the way down to the bitstream required to configure the FPGA, and verification of reconfigurable systems.
This book presents techniques for energy reduction in adaptive embedded multimedia systems, based on dynamically reconfigurable processors. The approach described will enable designers to meet performance/area constraints, while minimizing video quality degradation, under various, run-time scenarios. Emphasis is placed on implementing power/energy reduction at various abstraction levels. To enable this, novel techniques for adaptive energy management at both processor architecture and application architecture levels are presented, such that both hardware and software adapt together, minimizing overall energy consumption under unpredictable, design-/compile-time scenarios.
This is a practical book for computer engineers who want to understand or implement hardware/software systems. It focuses on problems that require one to combine hardware design with software design – such problems can be solved with hardware/software codesign. When used properly, hardware/software co- sign works better than hardware design or software design alone: it can improve the overall performance of digital systems, and it can shorten their design time. Hardware/software codesign can help a designer to make trade-offs between the ?exibility and the performanceof a digital system. To achieve this, a designer needs to combine two radically different ways of design: the sequential way of dec- position in time, using software, with the parallel way of decomposition in space, using hardware. Intended Audience This book assumes that you have a basic understandingof hardware that you are - miliar with standard digital hardware componentssuch as registers, logic gates, and components such as multiplexers and arithmetic operators. The book also assumes that you know how to write a program in C. These topics are usually covered in an introductory course on computer engineering or in a combination of courses on digital design and software engineering.