Download Free Introduction To Neutroalgebraic Structures And Antialgebraic Structures Revisited Book in PDF and EPUB Free Download. You can read online Introduction To Neutroalgebraic Structures And Antialgebraic Structures Revisited and write the review.

In all classical algebraic structures, the Laws of Compositions on a given set are well-defined. But this is a restrictive case, because there are many more situations in science and in any domain of knowledge when a law of composition defined on a set may be only partially-defined (or partially true) and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined (totally false) that we call AntiDefined. Again, in all classical algebraic structures, the Axioms (Associativity, Commutativity, etc.) defined on a set are totally true, but it is again a restrictive case, because similarly there are numerous situations in science and in any domain of knowledge when an Axiom defined on a set may be only partially-true (and partially-false), that we call NeutroAxiom, or totally false that we call AntiAxiom. Therefore, we open for the first time in 2019 new fields of research called NeutroStructures and AntiStructures respectively.
In all classical algebraic structures, the Laws of Compositions on a given set are well-defined. But this is a restrictive case, because there are many more situations in science and in any domain of knowledge when a law of composition defined on a set may be only partially-defined (or partially true) and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined (totally false) that we call AntiDefined.
NeutroSophication and AntiSophication are processes through which NeutroAlgebraic and AntiAlgebraic structures can be generated from any classical structures. Given any classical structure with m operations (laws and axioms) we can generate NeutroStructures and AntiStructures. In this paper, we introduce for the first time the concept of NeutroHyperGroups.
A collection of papers from multiple authors. In 2019 and 2020 Smarandache [1, 2, 3, 4] generalized the classical Algebraic Structures to NeutroAlgebraic Structures (or NeutroAlgebras) {whose operations and axioms are partially true, partially indeterminate, and partially false} as extensions of Partial Algebra, and to AntiAlgebraic Structures (or AntiAlgebras) {whose operations and axioms are totally false}. The NeutroAlgebras & AntiAlgebras are a new field of research, which is inspired from our real world. In classical algebraic structures, all axioms are 100%, and all operations are 100% well-defined, but in real life, in many cases these restrictions are too harsh, since in our world we have things that only partially verify some laws or some operations. Using the process of NeutroSophication of a classical algebraic structure we produce a NeutroAlgebra, while the process of AntiSophication of a classical algebraic structure produces an AntiAlgebra.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.
In general, a system S (that may be a company, association, institution, society, country, etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is formed by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet of a Set S { defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better describes the organization of people, beings, objects etc. in our real world. The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom in order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in any field of knowledge, one in fact encounters SuperHyperStructures. Also, six new types of topologies have been introduced in the last years (2019-2022), such as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, NeutroTopology, AntiTopology, SuperHyperTopology, and Neutrosophic SuperHyperTopology.
This tenth volume of Collected Papers includes 86 papers in English and Spanish languages comprising 972 pages, written between 2014-2022 by the author alone or in collaboration with the following 105 co-authors (alphabetically ordered) from 26 countries: Abu Sufian, Ali Hassan, Ali Safaa Sadiq, Anirudha Ghosh, Assia Bakali, Atiqe Ur Rahman, Laura Bogdan, Willem K.M. Brauers, Erick González Caballero, Fausto Cavallaro, Gavrilă Calefariu, T. Chalapathi, Victor Christianto, Mihaela Colhon, Sergiu Boris Cononovici, Mamoni Dhar, Irfan Deli, Rebeca Escobar-Jara, Alexandru Gal, N. Gandotra, Sudipta Gayen, Vassilis C. Gerogiannis, Noel Batista Hernández, Hongnian Yu, Hongbo Wang, Mihaiela Iliescu, F. Nirmala Irudayam, Sripati Jha, Darjan Karabašević, T. Katican, Bakhtawar Ali Khan, Hina Khan, Volodymyr Krasnoholovets, R. Kiran Kumar, Manoranjan Kumar Singh, Ranjan Kumar, M. Lathamaheswari, Yasar Mahmood, Nivetha Martin, Adrian Mărgean, Octavian Melinte, Mingcong Deng, Marcel Migdalovici, Monika Moga, Sana Moin, Mohamed Abdel-Basset, Mohamed Elhoseny, Rehab Mohamed, Mohamed Talea, Kalyan Mondal, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Ihsan, Muhammad Naveed Jafar, Muhammad Rayees Ahmad, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Mujahid Abbas, Mumtaz Ali, Radu I. Munteanu, Ghulam Murtaza, Munazza Naz, Tahsin Oner, ‪Gabrijela Popović, Surapati Pramanik, R. Priya, S.P. Priyadharshini, Midha Qayyum, Quang-Thinh Bui, Shazia Rana, Akbara Rezaei, Jesús Estupiñán Ricardo, Rıdvan Sahin, Saeeda Mirvakili, Said Broumi, A. A. Salama, Flavius Aurelian Sârbu, Ganeshsree Selvachandran, Javid Shabbir, Shio Gai Quek, Son Hoang Le, Florentin Smarandache, Dragiša Stanujkić, S. Sudha, Taha Yasin Ozturk, Zaigham Tahir, The Houw Iong, Ayse Topal, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Rizha Vitania, Luige Vlădăreanu, Victor Vlădăreanu, Ștefan Vlăduțescu, J. Vimala, Dan Valeriu Voinea, Adem Yolcu, Yongfei Feng, Abd El-Nasser H. Zaied, Edmundas Kazimieras Zavadskas.
Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities as well as their interactions with different ideational spectra. In all classical algebraic structures, the law of compositions on a given set are well-defined, but this is a restrictive case because there are situations in science where a law of composition defined on a set may be only partially defined and partially undefined, which we call NeutroDefined, or totally undefined, which we call AntiDefined. Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebra introduces NeutroAlgebra, an emerging field of research. This book provides a comprehensive collection of original work related to NeutroAlgebra and covers topics such as image retrieval, mathematical morphology, and NeutroAlgebraic structure. It is an essential resource for philosophers, mathematicians, researchers, educators and students of higher education, and academicians.
NeutroRings in some cases exhibit different algebraic properties, and in some cases they exhibit algebraic properties similar to the classical rings. The objective of this paper is to revisit the concept of NeutroRings and study finite and infinite NeutroRings of type-NR [8,9]. In NeutroRings of type-NR [8,9], the left and right distributive axioms are taking to be either partially true or partially false for some elements; while all other classical laws and axioms are taking to be totally true for all the elements. NeutroSubrings, NeutroIdeals, NeutroQuotientRings and NeutroRingHomomorphisms of the NeutroRings of type-NR[8,9] are studied with several interesting examples and their basic properties are presented.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. Papers concern with neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributions to economics, finance, management, industries, electronics, and communications are promoted.