Download Free Introduction To Mechanics Of Solid Materials Book in PDF and EPUB Free Download. You can read online Introduction To Mechanics Of Solid Materials and write the review.

Introduction to Mechanics of Solid Materials is concerned with the deformation, flow, and fracture of solid materials. This textbook offers a unified presentation of the major concepts in Solid Mechanics for junior/senior-level undergraduate students in the many branches of engineering - mechanical, materials, civil, and aeronautical engineering among others. The book begins by covering the basics of kinematics and strain, and stress and equilibrium, followed by a coverage of the small deformation theories for different types of material response: (i) Elasticity; (ii) Plasticity and Creep; (iii) Fracture and Fatigue; and (iv) Viscoelasticity. The book has additional chapters covering the important material classes of: (v) Rubber Elasticity, and (vi) Continuous-fiber laminated composites. The text includes numerous examples to aid the student. A substantial companion volume with example problems is available free of charge on the book's companion website.
Translation of hugely successful book aimed at advanced undergraduates, graduate students and researchers.
An introduction to the fundamental concepts of solid materials and their properties The primary recommended text of the Council of Engineering Institutions for university undergraduates studying the mechanics of solids New chapters covering revisionary mathematics, geometrical properties of symmetrical sections, bending stresses in beams, composites and the finite element method Free electronic resources and web downloads support the material contained within this book Mechanics of Solids provides an introduction to the behaviour of solid materials and their properties, focusing upon the fundamental concepts and principles of statics and stress analysis. Essential reading for first year undergraduates, the mathematics in this book has been kept as straightforward as possible and worked examples are used to reinforce key concepts. Practical stress and strain scenarios are also covered including stress and torsion, elastic failure, buckling, bending, as well as examples of solids such as thin-walled structures, beams, struts and composites. This new edition includes new chapters on revisionary mathematics, geometrical properties of symmetrical sections, bending stresses in beams, composites, the finite element method, and Ross’s computer programs for smartphones, tablets and computers.
This 2006 book combines modern and traditional solid mechanics topics in a coherent theoretical framework.
This expanded second edition presents in one text the concepts and processes covered in statics and mechanics of materials curricula following a systematic, topically integrated approach. Building on the novel pedagogy of fusing concepts covered in traditional undergraduate courses in rigid-body statics and deformable body mechanics, rather than simply grafting them together, this new edition develops further the authors’ very original treatment of solid mechanics with additional figures, an elaboration on selected solved problems, and additional text as well as a new subsection on viscoelasticity in response to students’ feedback. Introduction to Solid Mechanics: An Integrated Approach, Second Edition, offers a holistic treatment of the depth and breadth of solid mechanics and the inter-relationships of its underlying concepts. Proceeding from first principles to applications, the book stands as a whole greater than the sum of its parts.
Introduction to the Mechanics of Deformable Solids: Bars and Beams introduces the theory of beams and bars, including axial, torsion, and bending loading and analysis of bars that are subjected to combined loadings, including resulting complex stress states using Mohr’s circle. The book provides failure analysis based on maximum stress criteria and introduces design using models developed in the text. Throughout the book, the author emphasizes fundamentals, including consistent mathematical notation. The author also presents the fundamentals of the mechanics of solids in such a way that the beginning student is able to progress directly to a follow-up course that utilizes two- and three-dimensional finite element codes imbedded within modern software packages for structural design purposes. As such, excessive details included in the previous generation of textbooks on the subject are obviated due to their obsolescence with the availability of today’s finite element software packages.
This book offers an essential introduction to the linear and non-linear behavior of solid materials, and to the concepts of deformation, displacement and stress, within the context of continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of solid mechanics, experimental methods, classes of material behaviors, and the thermodynamic modeling framework. It then explores linear elastic behavior, thermoelasticity, plasticity, viscoplasticity, fracture mechanics and damage behavior. The last part of the book is devoted to conventional and magnetic shape memory alloys, which may be used as actuators or sensors in adaptive structures. Given its range of coverage, the book will be especially valuable for students of engineering courses in Mechanics. Further, it includes a wealth of examples and exercises, making it accessible to the widest possible audience.
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Experimental solid mechanics is the study of materials to determine their physical properties. This study might include performing a stress analysis or measuring the extent of displacement, shape, strain and stress which a material suffers under controlled conditions. In the last few years there have been remarkable developments in experimental techniques that measure shape, displacement and strains and these sorts of experiments are increasingly conducted using computational techniques. Experimental Mechanics of Solids is a comprehensive introduction to the topics, technologies and methods of experimental mechanics of solids. It begins by establishing the fundamentals of continuum mechanics, explaining key areas such as the equations used, stresses and strains, and two and three dimensional problems. Having laid down the foundations of the topic, the book then moves on to look at specific techniques and technologies with emphasis on the most recent developments such as optics and image processing. Most of the current computational methods, as well as practical ones, are included to ensure that the book provides information essential to the reader in practical or research applications. Key features: Presents widely used and accepted methodologies that are based on research and development work of the lead author Systematically works through the topics and theories of experimental mechanics including detailed treatments of the Moire, Speckle and holographic optical methods Includes illustrations and diagrams to illuminate the topic clearly for the reader Provides a comprehensive introduction to the topic, and also acts as a quick reference guide This comprehensive book forms an invaluable resource for graduate students and is also a point of reference for researchers and practitioners in structural and materials engineering.