Download Free Introduction To Mathematical Modeling Book in PDF and EPUB Free Download. You can read online Introduction To Mathematical Modeling and write the review.

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.
Introduction to Mathematical Modeling helps students master the processes used by scientists and engineers to model real-world problems, including the challenges posed by space exploration, climate change, energy sustainability, chaotic dynamical systems and random processes. Primarily intended for students with a working knowledge of calculus but minimal training in computer programming in a first course on modeling, the more advanced topics in the book are also useful for advanced undergraduate and graduate students seeking to get to grips with the analytical, numerical, and visual aspects of mathematical modeling, as well as the approximations and abstractions needed for the creation of a viable model.
A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.
An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.
This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).
Introduction to Mathematical Modeling and Computer Simulations is written as a textbook for readers who want to understand the main principles of Modeling and Simulations in settings that are important for the applications, without using the profound mathematical tools required by most advanced texts. It can be particularly useful for applied mathematicians and engineers who are just beginning their careers. The goal of this book is to outline Mathematical Modeling using simple mathematical descriptions, making it accessible for first- and second-year students.
This text provides essential modeling skills and methodology for the study of infectious diseases through a one-semester modeling course or directed individual studies. The book includes mathematical descriptions of epidemiological concepts, and uses classic epidemic models to introduce different mathematical methods in model analysis. Matlab codes are also included for numerical implementations. It is primarily written for upper undergraduate and beginning graduate students in mathematical sciences who have an interest in mathematical modeling of infectious diseases. Although written in a rigorous mathematical manner, the style is not unfriendly to non-mathematicians.
Learning mathematical modeling need not be difficult. Unlike other books, this book not only lists the equations one-by-one, but explains in detail how they are each derived, used, and finally assembled into a computer program for model simulations. This book shows how mathematics is applied in agriculture, in particular to modeling the growth and yield of a generic crop. Topics covered are agriculture meteorology, solar radiation interception and absorption, evapotranspiration, energy and soil water balance, soil water flow, photosynthesis, respiration, and crop growth development. Rather than covering many modeling approaches but in superficial detail, this book selects one or two widely-used modeling approaches and discusses about them in depth. Principles learned from this book equips readers when they encounter other modeling approaches or when they develop their own crop models.
The emphasis of this book lies in the teaching of mathematical modeling rather than simply presenting models. To this end the book starts with the simple discrete exponential growth model as a building block, and successively refines it. This involves adding variable growth rates, multiple variables, fitting growth rates to data, including random elements, testing exactness of fit, using computer simulations and moving to a continuous setting. No advanced knowledge is assumed of the reader, making this book suitable for elementary modeling courses. The book can also be used to supplement courses in linear algebra, differential equations, probability theory and statistics.
This is an introduction to game theory and applications with an emphasis on self-discovery from the perspective of a mathematical modeller. The book deals in a unified manner with the central concepts of both classical and evolutionary game theory. The key ideas are illustrated throughout by a wide variety of well-chosen examples of both human and non-human behavior, including car pooling, price fixing, food sharing, sex allocation and competition for territories or oviposition sites. There are numerous exercises with solutions.