Download Free Introduction To Environmental Physics Book in PDF and EPUB Free Download. You can read online Introduction To Environmental Physics and write the review.

The changing climate and its affect on all of us is becoming increasingly apparent - ozone depletion, hurricanes, floods and extreme weather behaviour. Introduction to Environmental Physics challenges the way we think about how and why environmental change occurs. This authoritative book aims to cover some of the more common and popular topics addressed in "physics of the earth", "physics of the environment" and "environmental physics" courses. It provides an essentially non- mathematical treatment suitable for a first year undergraduate level course. The principle topics covered are the physics of the built environment, the physics of human survival, energy for living, environmental health, revealing the planet, the sun and the atmosphere, the biosphere, the global climate and climate change. With contributions from well-respected experts on the subject, this textbook contains a summary, references and questions at the end of each chapter. This is an ideal textbook for first year undergraduates in a variety of courses, particularly physical geography, physics, environmental and earth science, with worked examples illustrating principles and vignettes from scientists who have made a significant contribution to the field enlightening the student along the way. As the authors say in the preface to this book, "At the outset of the 21st century there are many environmental challenges to be wrestled with, and though the environment is changing, the Physics is not!"
First Published in 2002. Environmental Physics is a comprehensive introduction to the physical concepts underlying environmental science. The importance and relevance of physics is emphasised by its application to real environmental problems with a wide range of case studies. Applications included cover energy use and production, global climate, the physics of living things, radioactivity, environmental remote sensing, noise pollution and the physics of the Earth. The book makes the subject accessible to those with little physics background, keeping mathematical treatment straightforward. The text is lively and informative, and is supplemented by numerous illustrations, photos, tables of useful data, and a glossary of key terms.
An abridged, student-oriented edition of Hillel's earlier published Environmental Soil Physics, Introduction to Environmental Soil Physics is a more succinct elucidation of the physical principles and processes governing the behavior of soil and the vital role it plays in both natural and managed ecosystems. The textbook is self-contained and self-explanatory, with numerous illustrations and sample problems. Based on sound fundamental theory, the textbook leads to a practical consideration of soil as a living system in nature and illustrates the influences of human activity upon soil structure and function. Students, as well as other readers, will better understand the importance of soils and the pivotal possition they occupy with respect to careful and knowledgeable conservation. Written in an engaging and clear style, posing and resolving issues relevant to the terrestrial environment Explores the gamut of the interactions among the phases in the soil and the dynamic interconnection of the soil with the subterranean and atmospheric domains Reveals the salient ideas, approaches, and methods of environmental soil physics Includes numerous illustrative exercises, which are explicitly solved Designed to serve for classroom and laboratory instruction, for self-study, and for reference Oriented toward practical problems in ecology, field-scale hydrology, agronomy, and civil engineering Differs from earlier texts in its wider scope and holistic environmental conception
From reviews of the first edition: "well organized . . . Recommended as an introductory text for undergraduates" -- AAAS Science Books and Films "well written and illustrated" -- Bulletin of the American Meteorological Society
Thoroughly revised and up-dated edition of a highly successful textbook.
The book aims to cover some of the more common and popular topics addressed in physics of the earth, physics of the environment, and the environmental physics course. It provides an essentially nonmathematical treatment suitable for a first year undergraduate level course. The text covers the physics of the built environment, the physics of human survival, environmental health, the sun and the atmosphere, the biosphere, and the global climate and climate change.
Presents the experimental results while explaining the underlying physics on the basis of simple reasoning and agumentation. Assumes only basic knowledge of of fundamental physics and mathematics as usually required for introductory college courses in science or engineering curricula. Derives more specifics of selected topics as each phenomenon considered ,epmasizing an intuitive over a rigorous mathematical approach. Directed at a broad group of readers and students.
This thoroughly revised and updated third edition focuses on the utilization of sustainable energy and mitigating climate change, serving as an introduction to physics in the context of societal problems. A distinguishing feature of the text is the discussion of spectroscopy and spectroscopic methods as a crucial means to quantitatively analyze and monitor the condition of the environment, the factors determining climate change, and all aspects of energy conversion. This textbook will be invaluable to students in physics and related subjects, and supplementary materials are available on a companion website http://www.nat.vu.nl/environmentalphysics Instructor support material is available at http://booksupport.wiley.com
This introductory textbook describes the nature of the Earth's environment and its physical processes so as to highlight environmental concerns arising from human use and misuse of soil and water resources. The author provides a thorough introduction to the basic issues regarding the sustainable, productive use of land resources that is vital in maintaining healthy rivers and good groundwater qualities. He develops a quantitative approach to studying these growing environmental concerns in a way that does not require prior knowledge of the physical sciences or calculus. The straightforward writing style, lack of prerequisite knowledge and copious illustrations make this textbook suitable for introductory university courses, as well as being a useful primer for research and management staff in environmental and resources management organisations. Each chapter ends with a set of student exercises for which solutions are available from [email protected].
Contributor biographical information for An introduction to atmospheric physics / David G. Andrews. Bibliographic record and links to related information available from the Library of Congress catalog Biographical text provided by the publisher (may be incomplete or contain other coding). The Library of Congress makes no claims as to the accuracy of the information provided, and will not maintain or otherwise edit/update the information supplied by the publisher. -- -- David Andrews has been a lecturer in Physics at Oxford University and a Physics tutor at Lady Margaret Hall, Oxford, for 20 years. During this time he has had extensive experience of teaching a wide range of physics courses, including atmospheric physics. This experience has included giving lectures to large student audiences and also giving tutorials to small groups. Tutorials, in particular, have given him insights into the kinds of problems that physics students encounter when learning atmospheric physics, and the kinds of topics that excite them. His broad teaching experience has also helped him introduce students to connections between topics in atmospheric physics and related topics in other areas of physics. He feels that it is particularly important to expose today's physics students to the excitements and challenges presented by the atmosphere and climate. He has also published a graduate textbook, Middle Atmosphere Dynamics, with J.R. Holton and C.B. Leovy (1987, Academic Press). He is a Fellow of the Royal Meteorological Society, a Member of the Institute of Physics, and a Member of the American Meteorological Society.