Download Free Introduction To Electric Circuits And Machines Book in PDF and EPUB Free Download. You can read online Introduction To Electric Circuits And Machines and write the review.

Majors and non-majors in electricity will benefit from this easy-to-understand and highly illustrated introduction to DC and AC electrical theory, circuits, and equipment. The only prequisites are algebra and a basic knowledge of trigonometry. This updated edition reflects changes in industry resulting from increasing computerization of electrical equipment. Modern solid-state components are covered in appropriate sections throughout the book. These components are especially featured in the area of industrial controls.
This introduction to DC/AC circuit analysis includes abundant examples of electronics applications as well as coverage of machines. The first part introduces DC circuits, measuring instruments, and machines, while the second part examines the effect of alternating current on electric circuits, generators, and motors. Appropriate for courses in circuit analysis and electronics
The central theme of Introduction to Electric Circuits is the concept that electric circuits are a part of the basic fabric of modern technology. Given this theme, this book endeavors to show how the analysis and design of electric circuits are inseparably intertwined with the ability of the engineer to design complex electronic, communication, computer and control systems as well as consumer products.This book is designed for a one-to three-term course in electric circuits or linear circuit analysis, and is structured for maximum flexibility.
Relevant applications to electronics, telecommunications and power systems are included in a comprehensive introduction to the theory of electronic circuits for physical science students.
Electrical Circuit Theory and Technology is a fully comprehensive text for courses in electrical and electronic principles, circuit theory and electrical technology. The coverage takes students from the fundamentals of the subject, to the completion of a first year degree level course. Thus, this book is ideal for students studying engineering for the first time, and is also suitable for pre-degree vocational courses, especially where progression to higher levels of study is likely. John Bird's approach, based on 700 worked examples supported by over 1000 problems (including answers), is ideal for students of a wide range of abilities, and can be worked through at the student's own pace. Theory is kept to a minimum, placing a firm emphasis on problem-solving skills, and making this a thoroughly practical introduction to these core subjects in the electrical and electronic engineering curriculum. This revised edition includes new material on transients and laplace transforms, with the content carefully matched to typical undergraduate modules. Free Tutor Support Material including full worked solutions to the assessment papers featured in the book will be available at http://textbooks.elsevier.com/. Material is only available to lecturers who have adopted the text as an essential purchase. In order to obtain your password to access the material please follow the guidelines in the book.
This textbook provides an introduction to circuits, systems, and motors for students in electrical engineering as well as other majors that need an introduction to circuits. Unlike most other textbooks that highlight only circuit theory, this book goes into detail on many practical aspects of working with circuits, including electrical safety and the proper method to measure the relevant circuit parameters using modern measurement systems. Coverage also includes a detailed discussion of motors and generators, including brushless DC motors, as these are critical topics in the robotic and mechatronics industries. Lastly, the book discusses A/D and D/A converters given their importance in modern measurement and control systems. In addition to covering the basic circuit concepts, the author also provides the students with the necessary mathematics to analyze correctly the circuit concepts being presented. The chapter on phasor domain circuit analysis begins with a detailed review of complex numbers as many students are weak in this area. Likewise, before discussing filters and Bode Diagrams, the Fourier Transform and later the Laplace Transform are explained.
This book integrates analytical and digital solutions through Alternative Transients Program (ATP) software, recognized for its use all over the world in academia and in the electric power industry, utilizing a didactic approach appropriate for graduate students and industry professionals alike. This book presents an approach to solving singular-function differential equations representing the transient and steady-state dynamics of a circuit in a structured manner, and without the need for physical reasoning to set initial conditions to zero plus (0+). It also provides, for each problem presented, the exact analytical solution as well as the corresponding digital solution through a computer program based on the Electromagnetics Transients Program (EMTP). Of interest to undergraduate and graduate students, as well as industry practitioners, this book fills the gap between classic works in the field of electrical circuits and more advanced works in the field of transients in electrical power systems, facilitating a full understanding of digital and analytical modeling and solution of transients in basic circuits.
This book aims to offer a thorough study and reference textbook on electrical machines and drives. The basic idea is to start from the pure electromagnetic principles to derive the equivalent circuits and steady-state equations of the most common electrical machines (in the first parts). Although the book mainly concentrates on rotating field machines, the first two chapters are devoted to transformers and DC commutator machines. The chapter on transformers is included as an introduction to induction and synchronous machines, their electromagnetics and equivalent circuits. Chapters three and four offer an in-depth study of induction and synchronous machines, respectively. Starting from their electromagnetics, steady-state equations and equivalent circuits are derived, from which their basic properties can be deduced. The second part discusses the main power-electronic supplies for electrical drives, for example rectifiers, choppers, cycloconverters and inverters. Much attention is paid to PWM techniques for inverters and the resulting harmonic content in the output waveform. In the third part, electrical drives are discussed, combining the traditional (rotating field and DC commutator) electrical machines treated in the first part and the power electronics of part two. Field orientation of induction and synchronous machines are discussed in detail, as well as direct torque control. In addition, also switched reluctance machines and stepping motors are discussed in the last chapters. Finally, part 4 is devoted to the dynamics of traditional electrical machines. Also for the dynamics of induction and synchronous machine drives, the electromagnetics are used as the starting point to derive the dynamic models. Throughout part 4, much attention is paid to the derivation of analytical models. But, of course, the basic dynamic properties and probable causes of instability of induction and synchronous machine drives are discussed in detail as well, with the derived models for stability in the small as starting point. In addition to the study of the stability in the small, a chapter is devoted to large-scale dynamics as well (e.g. sudden short-circuit of synchronous machines). The textbook is used as the course text for the Bachelor’s and Master’s programme in electrical and mechanical engineering at the Faculty of Engineering and Architecture of Ghent University. Parts 1 and 2 are taught in the basic course ’Fundamentals of Electric Drives’ in the third bachelor. Part 3 is used for the course ’Controlled Electrical Drives’ in the first master, while Part 4 is used in the specialised master on electrical energy.
"Alexander and Sadiku's sixth edition of Fundamentals of Electric Circuits continues in the spirit of its successful previous editions, with the objective of presenting circuit analysis in a manner that is clearer, more interesting, and easier to understand than other, more traditional texts. Students are introduced to the sound, six-step problem solving methodology in chapter one, and are consistently made to apply and practice these steps in practice problems and homework problems throughout the text."--Publisher's website.