Download Free Introduction To Digital Communication Book in PDF and EPUB Free Download. You can read online Introduction To Digital Communication and write the review.

Introduction to Digital Communications explores the basic principles in the analysis and design of digital communication systems, including design objectives, constraints and trade-offs. After portraying the big picture and laying the background material, this book lucidly progresses to a comprehensive and detailed discussion of all critical elements and key functions in digital communications. - The first undergraduate-level textbook exclusively on digital communications, with a complete coverage of source and channel coding, modulation, and synchronization. - Discusses major aspects of communication networks and multiuser communications - Provides insightful descriptions and intuitive explanations of all complex concepts - Focuses on practical applications and illustrative examples. - A companion Web site includes solutions to end-of-chapter problems and computer exercises, lecture slides, and figures and tables from the text
Combining theoretical knowledge and practical applications, this advanced-level textbook covers the most important aspects of contemporary digital communication systems. Introduction to Digital Communication Systems focuses on the rules of functioning digital communication system blocks, starting with the performance limits set by the information theory. Drawing on information relating to turbo codes and LDPC codes, the text presents the basic methods of error correction and detection, followed by baseband transmission methods, and single- and multi-carrier digital modulations. The basic properties of several physical communication channels used in digital communication systems are explained, showing the transmission and reception methods on channels suffering from intersymbol interference. The text also describes the most recent developments in the transmission techniques specific to wireless communications used both in wireline and wireless systems. The case studies are a unique feature of this book, illustrating elements of the theory developed in each chapter. Introduction to Digital Communication Systems provides a concise approach to digital communications, with practical examples and problems to supplement the text. There is also a companion website featuring an instructors’ solutions manual and presentation slides to aid understanding. Offers theoretical and practical knowledge in a self-contained textbook on digital communications Explains basic rules of recent achievements in digital communication systems such as MIMO, turbo codes, LDPC codes, OFDMA, SC-FDMA Provides problems at the end of each chapter with an instructors’ solutions manual on the companion website Includes case studies and representative communication system examples such as DVB-S, GSM, UMTS, 3GPP-LTE
The only book available that integrates a realistic design approach with a theoretical approach! This outstanding new book focuses on the central theoretical and practical issues involved in modem design. The first half deals with the basic issues of base-band and passband data transmission and contains descriptions of applications to specific digital transmission systems. The second half specifically addresses design issues including timing and carrier recovery, channel characterization, adaptive equalization, and trellis coding. The author uses simulation programs in Matlab and C to help readers: * Determine the power spectral density of complex data encoding rules * Simulate the performance of passband data transmission techniques * Design and assess the performance of carrier recovery systems * Develop time domain models for a variety of channels * Design and assess the performance of adaptive equalizers * Use existing programs as the framework for creating simulation modules
The renowned communications theorist Robert Gallager brings his lucid writing style to the study of the fundamental system aspects of digital communication for a one-semester course for graduate students. With the clarity and insight that have characterized his teaching and earlier textbooks, he develops a simple framework and then combines this with careful proofs to help the reader understand modern systems and simplified models in an intuitive yet precise way. A strong narrative and links between theory and practice reinforce this concise, practical presentation. The book begins with data compression for arbitrary sources. Gallager then describes how to modulate the resulting binary data for transmission over wires, cables, optical fibers, and wireless channels. Analysis and intuitive interpretations are developed for channel noise models, followed by coverage of the principles of detection, coding, and decoding. The various concepts covered are brought together in a description of wireless communication, using CDMA as a case study.
The Accessible Guide to Modern Wireless Communication for Undergraduates, Graduates, and Practicing Electrical Engineers Wireless communication is a critical discipline of electrical engineering and computer science, yet the concepts have remained elusive for students who are not specialists in the area. This text makes digital communication and receiver algorithms for wireless communication broadly accessible to undergraduates, graduates, and practicing electrical engineers. Notably, the book builds on a signal processing foundation and does not require prior courses on analog or digital communication. Introduction to Wireless Digital Communication establishes the principles of communication, from a digital signal processing perspective, including key mathematical background, transmitter and receiver signal processing algorithms, channel models, and generalizations to multiple antennas. Robert Heath’s “less is more” approach focuses on typical solutions to common problems in wireless engineering. Heath presents digital communication fundamentals from a signal processing perspective, focusing on the complex pulse amplitude modulation approach used in most commercial wireless systems. He describes specific receiver algorithms for implementing wireless communication links, including synchronization, carrier frequency offset estimation, channel estimation, and equalization. While most concepts are presented for systems with single transmit and receive antennas, Heath concludes by extending those concepts to contemporary MIMO systems. To promote learning, each chapter includes previews, bullet-point summaries, examples, and numerous homework problems to help readers test their knowledge. Basics of wireless communication: applications, history, and the central role of signal processing Digital communication essentials: components, channels, distortion, coding/decoding, encryption, and modulation/demodulation Signal processing: linear time invariant systems, probability/random processes, Fourier transforms, derivation of complex baseband signal representation and equivalent channels, and multi-rate signal processing Least-squared estimation techniques that build on the linear algebra typically taught to electrical engineering undergraduates Complex pulse amplitude modulation: symbol mapping, constellations, signal bandwidth, and noise Synchronization, including symbol, frame, and carrier frequency offset Frequency selective channel estimation and equalization MIMO techniques using multiple transmit and/or receive antennas, including SIMO, MISO, and MIMO-OFDM Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available.
Introduces digital mobile communications with an emphasis on digital transmission methods This book presents mathematical analyses of signals, mobile radio channels, and digital modulation methods. The new edition covers the evolution of wireless communications technologies and systems. The major new topics are OFDM (orthogonal frequency domain multiplexing), MIMO (multi-input multi-output) systems, frequency-domain equalization, the turbo codes, LDPC (low density parity check code), ACELP (algebraic code excited linear predictive) voice coding, dynamic scheduling for wireless packet data transmission and nonlinearity compensating digital pre-distorter amplifiers. The new systems using the above mentioned technologies include the second generation evolution systems, the third generation systems with their evolution systems, LTE and LTE-advanced systems, and advanced wireless local area network systems. The second edition of Digital Mobile Communication: Presents basic concepts and applications to a variety of mobile communication systems Discusses current applications of modern digital mobile communication systems Covers the evolution of wireless communications technologies and systems in conjunction with their background The second edition of Digital Mobile Communication is an important textbook for university students, researchers, and engineers involved in wireless communications.
This book provides an introduction to the basic concepts in digital communications for readers with little or no previous exposure to either digital or analog communications. The intent is to help learners develop a firm understanding of digital communication system engineering--and to enable them to conduct system-level design and analysis for digital communication systems of the future. As a result, the book emphasizes the basic principles of digital communications theory and techniques, rather than presenting specific technologies for implementation. Chapter topics include probability and random variables--review and notation, introduction to random processes, linear filtering of random processes, frequency-domain analysis of random processes in linear systems, baseband transmission of binary data, coherent communications, noncoherent communications, intersymbol interference, and spread-spectrum communication systems. For individuals preparing for a career in wireless communications system design.
This book primarily focuses on the design of analog and digital communication systems; and has been structured to cater to the second year engineering undergraduate students of Computer Science, Information Technology, Electrical Engineering and Electronics and Communication departments. For better understanding, the basics of analog communication systems are outlined before the digital communication systems section. The content of this book is also suitable for the students with little knowledge in communication systems. The book is divided into five modules for efficient presentation, and it provides numerous examples and illustrations for the detailed understanding of the subject, in a thorough manner.
This is a concise presentation of the concepts underlying the design of digital communication systems, without the detail that can overwhelm students. Many examples, from the basic to the cutting-edge, show how the theory is used in the design of modern systems and the relevance of this theory will motivate students. The theory is supported by practical algorithms so that the student can perform computations and simulations. Leading edge topics in coding and wireless communication make this an ideal text for students taking just one course on the subject. Fundamentals of Digital Communications has coverage of turbo and LDPC codes in sufficient detail and clarity to enable hands-on implementation and performance evaluation, as well as 'just enough' information theory to enable computation of performance benchmarks to compare them against. Other unique features include space-time communication and geometric insights into noncoherent communication and equalization.
This practical guide helps readers to learn how to develop and implement synchronization functions in digital communication systems.