Download Free Introduction To Carbon Nanomaterials Book in PDF and EPUB Free Download. You can read online Introduction To Carbon Nanomaterials and write the review.

Current and Future Developments in Nanomaterials and Carbon Nanotubes presents thematic volumes that highlight research in the field of nanomaterials. The book series covers the theory and application of nanomaterials including carbon nanotubes, composites, metallic nanomaterials and much more. It is essential reading to researchers interested in keeping up to date with nanomaterial applications in a wide variety of fields such as medicine, engineering and biotechnology.
This volume is a tribute to the career of Prof. Mildred Dresselhaus. It focuses on the optical properties and spectroscopy of single-wall carbon nanotubes. It contains chapters on diverse experimental and theoretical aspects of the field, written by internationally recognized experts. The volume serves as an important resource for researchers and students interested in carbon nanotubes.
Carbon nanotubes belong to new nanomaterials and have been known for almost 20 years, but their history is somewhat lengthier. They have been identified as promising candidates for various applications.High-temperature preparation techniques are conventional techniques for the synthesis of carbon nanotubes using arc discharge or laser ablation, but today these methods are being replaced by low-temperature vapor deposition techniques, since orientation, alignment, nanotube length, diameter, purity, and density of carbon nanotubes can be precisely controlled. The synthesis of carbon nanotubes by chemical vapor deposition on catalyst arrays leads to nanotube models grown from specific sites on surfaces. The controlled synthesis of nanotubes opens up interesting possibilities in nanoscience and nanotechnologies, including electrical, mechanical and electromechanical properties and devices, chemical functionalization, surface chemistry and photochemistry, molecular sensors, and interfacing with moderate biological systems.Carbon nanotubes are used in many applications due to their unique electrical, mechanical, optical, thermal, and other properties. Conductive and high-strength composite materials, energy saving and energy conversion devices, sensors, visualization of field emissions and sources of radiation, means for storing hydrogen, and nanoscale semiconductor devices, probes, and interconnections are some of the many applications of carbon nanotubes.
Handbook of Carbon-Based Nanomaterials provides a comprehensive overview of carbon-based nanomaterials and recent advances in these specialized materials. This book opens with a brief introduction to carbon, including the different forms of carbon and their range of uses. Each chapter systematically covers a different type of carbon-based nanomaterial, including its individual characteristics, synthesis techniques and applications in industry, biomedicine and research. This book offers a broad handbook on carbon-based nanomaterials, detailing the materials aspects, applications and recent advances of this expansive topic. With its global team of contributing authors, Handbook of Carbon-Based Nanomaterials collates specific technical expertise from around the world, for each type of carbon-based nanomaterial. Due to the broad nature of the coverage, this book will be useful to an interdisciplinary readership, including researchers in academia and industry in the fields of materials science, engineering, chemistry, energy and biomedical engineering. - Covers a range of carbon-based nanomaterials, including graphene, fullerenes and much more - Describes key properties, synthesis techniques and characterization of each carbon-based nanomaterial - Discusses a range of applications of carbon-based nanomaterials, from biomedicine to energy applications
Nanotechnology is no longer a merely social talking point and is beginning to affect the lives of everyone. Carbon nanotechnology as a major shaper of new nanotechnologies has evolved into a truly interdisciplinary field, which encompasses chemistry, physics, biology, medicine, materials science and engineering. This is a field in which a huge amount of literature has been generated within recent years, and the number of publications is still increasing every year. Carbon Nanotechnology aims to provide a timely coverage of the recent development in the field with updated reviews and remarks by world-renowned experts. Intended to be an exposition of cutting-edge research and development rather than a kind of conference proceeding, Carbon Nanotechnology will be very useful not only to experienced scientists and engineers, who wish to broaden their knowledge of the wide-ranging nanotechnology and/or to develop practical devices, but also to graduate and senior undergraduate students who look to make their mark in this field of the future.· A comprehensive treatment from materials chemistry and structure-property to practical applications· Offers an in-depth analysis of various carbon nanotechnologies from both fundamental and practical perspectives· An easily accessible assessment of the materials properties and device performances based on all of the major classes of carbon nanomaterials, including: carbon fiber; diamond; C60; and carbon nanotubes· A concise compilation of the practical applications of carbon nanotechnologies from polymer-carbon nanocomposites to sensors, electron emitters, and molecular electronics
Carbon nanotubes and graphene have been the subject of intense scientific research since their relatively recent discoveries. This book introduces the reader to the science behind these rapidly developing fields, and covers both the fundamentals and latest advances. Uniquely, this book covers the topics in a pedagogical manner suitable for undergraduate students. The book also uses the simple systems of nanotubes and graphene as models to teach concepts such as molecular orbital theory, tight binding theory and the Laue treatment of diffraction. Suitable for undergraduate students with a working knowledge of basic quantum mechanics, and for postgraduate researchers commencing their studies into the field, this book will equip the reader to critically evaluate the physical properties and potential for applications of graphene and carbon nanotubes.
This book overviews the current status of research and development activities of CNTs in nanodevices, nanomaterials, or nanofabrication. This book presents 15 state-of-the-art review articles that cover CNT synthesis technologies for growing highly orientated CNTs, chirality-pure CNTs and CNTs at a large throughput and low cost, CNT assembly techniques, CNT sorting and separation processes, CNT functionalization engineering for more functionalities, CNT fundamental properties and their practical/potential electrical, electronic, optical, mechanical, chemical and biological applications.
Carbon nanotubes have been studied extensively in relation to fullerenes, and together with fullerenes have opened a new science and technology field on nano scale materials.A whole range of issues from the preparation, structure, properties and observation of quantum effects in carbon nanotubes in comparison with 0-D fullerenes are discussed.In addition, complementary reviews on carbon nanoparticles such as carbon nano-capsules, onion-like graphite particles and metal-coated fullerenes are covered.This book aims to cover recent research and development in this area, and so provide a convenient reference tool for all researchers in this field. It is also hoped that this book can serve to stimulate future work on carbon nanotubes.
Nanotechnology means technology with nanomaterials. Nanomaterials are defined as materials with at least one dimension of them of a nano size. A nano meter (nm) is an SI (Systéme International d’Unités) unit of length 10-9 m or a distance of one-billionth of a meter. At this exceedingly small size, you are talking about a few/finite number of atoms or molecules. Tubes have two dimensions, a diameter, and a length, and out of these two dimensions, the length dimension will be much greater than the other one. And in nanomaterials the least dimension will be of nano size. Hence, nanotubes will have their diameters of nano size. Carbon nanotubes are made up of carbon atoms. They can be considered miniature cylinders. At present only carbon nanotubes are known in the class of nanotubes. Hence, the rest of the book will mention carbon nanotubes as simply nanotubes.
Synthesis, Technology and Applications of Carbon Nanomaterials explores the chemical properties of different classes of carbon nanomaterials and their major applications. As carbon nanomaterials are used for a variety of applications due to their versatile properties and characteristics, this book discusses recent advances in synthesis methods, characterization, and applications of 0D -3D dimensional carbon nanomaterials. It is an essential resource for readers focusing on carbon nanomaterials research. - Explores the chemical properties of different classes of carbon nanomaterials and their major applications - Discusses recent advances in synthesis methods, characterization, and applications of 0D -3D dimensional carbon nanomaterials