Download Free Introduction To Biometry Book in PDF and EPUB Free Download. You can read online Introduction To Biometry and write the review.

Statistical methods are becoming more important in all biological fields of study. Biometry deals with the application of mathematical techniques to the quantitative study of varying characteristics of organisms, populations, species, etc. This book uses examples based on genuine data carefully chosen by the author for their special biological significance. The chapters cover a broad spectrum of topics and bridge the gap between introductory biological statistics and advanced approaches such as multivariate techniques and nonlinear models. A set of statistical tables most frequently used in biometry completes the book.
Biometric recognition, or simply biometrics, is the science of establishing the identity of a person based on physical or behavioral attributes. It is a rapidly evolving field with applications ranging from securely accessing one’s computer to gaining entry into a country. While the deployment of large-scale biometric systems in both commercial and government applications has increased the public awareness of this technology, "Introduction to Biometrics" is the first textbook to introduce the fundamentals of Biometrics to undergraduate/graduate students. The three commonly used modalities in the biometrics field, namely, fingerprint, face, and iris are covered in detail in this book. Few other modalities like hand geometry, ear, and gait are also discussed briefly along with advanced topics such as multibiometric systems and security of biometric systems. Exercises for each chapter will be available on the book website to help students gain a better understanding of the topics and obtain practical experience in designing computer programs for biometric applications. These can be found at: http://www.csee.wvu.edu/~ross/BiometricsTextBook/. Designed for undergraduate and graduate students in computer science and electrical engineering, "Introduction to Biometrics" is also suitable for researchers and biometric and computer security professionals.
Biometric Systems provides practitioners with an overview of the principles and methods needed to build reliable biometric systems. It covers three main topics: key biometric technologies, design and management issues, and the performance evaluation of biometric systems for personal verification/identification. The four most widely used technologies are focused on - speech, fingerprint, iris and face recognition. Key features include: in-depth coverage of the technical and practical obstacles which are often neglected by application developers and system integrators and which result in shortfalls between expected and actual performance; and protocols and benchmarks which will allow developers to compare performance and track system improvements.
We live in a society which is increasingly interconnected, in which communication between individuals is mostly mediated via some electronic platform, and transactions are often carried out remotely. In such a world, traditional notions of trust and confidence in the identity of those with whom we are interacting, taken for granted in the past, can be much less reliable. Biometrics - the scientific discipline of identifying individuals by means of the measurement of unique personal attributes - provides a reliable means of establishing or confirming an individual's identity. These attributes include facial appearance, fingerprints, iris patterning, the voice, the way we write, or even the way we walk. The new technologies of biometrics have a wide range of practical applications, from securing mobile phones and laptops to establishing identity in bank transactions, travel documents, and national identity cards. This Very Short Introduction considers the capabilities of biometrics-based identity checking, from first principles to the practicalities of using different types of identification data. Michael Fairhurst looks at the basic techniques in use today, ongoing developments in system design, and emerging technologies, all aimed at improving precision in identification, and providing solutions to an increasingly wide range of practical problems. Considering how they may continue to develop in the future, Fairhurst explores the benefits and limitations of these pervasive and powerful technologies, and how they can effectively support our increasingly interconnected society. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
This book brings together aspects of statistics and machine learning to provide a comprehensive guide to evaluating, interpreting and understanding biometric data. It naturally leads to topics including data mining and prediction to be examined in detail. The book places an emphasis on the various performance measures available for biometric systems, what they mean, and when they should and should not be applied. The evaluation techniques are presented rigorously, however they are always accompanied by intuitive explanations. This is important for the increased acceptance of biometrics among non-technical decision makers, and ultimately the general public.
Biometrics is a rapidly evolving field with applications ranging from accessing one’s computer to gaining entry into a country. The deployment of large-scale biometric systems in both commercial and government applications has increased public awareness of this technology. Recent years have seen significant growth in biometric research resulting in the development of innovative sensors, new algorithms, enhanced test methodologies and novel applications. This book addresses this void by inviting some of the prominent researchers in Biometrics to contribute chapters describing the fundamentals as well as the latest innovations in their respective areas of expertise.
Thoroughly revised to cater the needs of Graduate and Post Graduate students spanning various colleges and Universities nationwide. This fourth revised edition has the following latest features. > The textbook is written in a clear lucid manner to cover the theortical, practical and applied aspect of biostatistics. > Well-labelled illustrations, diagrams, tables and adequate examples complement the text so that student may practice on their own. > Numerous examination oriented solved problems as well as number of topics viz set theory, Bionomial Expansion, Permutation, Combination and Non-Parametric Statistics have been incorporated. > Theortical Discussions as well as solution of problems have been represented in unambiguos language so as to clear to the needs of all students of Biosciences (Zoology, Botany, Physiology, Microbiology and Biotechnology etc.)
Offers students with little background in statistical analysis an introduction to a variety of statistical concepts and methods. In addition to the incorporation of computer calculation, this new edition expands on a number of important topics, including the revised Kolmogrov-Smirnov test.
With an A–Z format, this encyclopedia provides easy access to relevant information on all aspects of biometrics. It features approximately 250 overview entries and 800 definitional entries. Each entry includes a definition, key words, list of synonyms, list of related entries, illustration(s), applications, and a bibliography. Most entries include useful literature references providing the reader with a portal to more detailed information.
Biometric recognition-the automated recognition of individuals based on their behavioral and biological characteristic-is promoted as a way to help identify terrorists, provide better control of access to physical facilities and financial accounts, and increase the efficiency of access to services and their utilization. Biometric recognition has been applied to identification of criminals, patient tracking in medical informatics, and the personalization of social services, among other things. In spite of substantial effort, however, there remain unresolved questions about the effectiveness and management of systems for biometric recognition, as well as the appropriateness and societal impact of their use. Moreover, the general public has been exposed to biometrics largely as high-technology gadgets in spy thrillers or as fear-instilling instruments of state or corporate surveillance in speculative fiction. Now, as biometric technologies appear poised for broader use, increased concerns about national security and the tracking of individuals as they cross borders have caused passports, visas, and border-crossing records to be linked to biometric data. A focus on fighting insurgencies and terrorism has led to the military deployment of biometric tools to enable recognition of individuals as friend or foe. Commercially, finger-imaging sensors, whose cost and physical size have been reduced, now appear on many laptop personal computers, handheld devices, mobile phones, and other consumer devices. Biometric Recognition: Challenges and Opportunities addresses the issues surrounding broader implementation of this technology, making two main points: first, biometric recognition systems are incredibly complex, and need to be addressed as such. Second, biometric recognition is an inherently probabilistic endeavor. Consequently, even when the technology and the system in which it is embedded are behaving as designed, there is inevitable uncertainty and risk of error. This book elaborates on these themes in detail to provide policy makers, developers, and researchers a comprehensive assessment of biometric recognition that examines current capabilities, future possibilities, and the role of government in technology and system development.