Download Free Introduction To Aerosol Science Book in PDF and EPUB Free Download. You can read online Introduction To Aerosol Science and write the review.

This self-contained handbook and ready reference examines aerosol science and technology in depth, providing a detailed insight into this progressive field. As such, it covers fundamental concepts, experimental methods, and a wide variety of applications, ranging from aerosol filtration to biological aerosols, and from the synthesis of carbon nanotubes to aerosol reactors. Written by a host of internationally renowned experts in the field, this is an essential resource for chemists and engineers in the chemical and materials disciplines across multiple industries, as well as ideal supplementary reading in graduate level courses.
AEROSOL SCIENCE TECHNOLOGY AND APPLICATIONS Aerosols influence many areas of our daily life. They are at the core of environmental problems such as global warming, photochemical smog and poor air quality. They can also have diverse effects on human health, where exposure occurs in both outdoor and indoor environments. However, aerosols can have beneficial effects too; the delivery of drugs to the lungs, the delivery of fuels for combustion and the production of nanomaterials all rely on aerosols. Advances in particle measurement technologies have made it possible to take advantage of rapid changes in both particle size and concentration. Likewise, aerosols can now be produced in a controlled fashion. Reviewing many technological applications together with the current scientific status of aerosol modelling and measurements, this book includes: Satellite aerosol remote sensing The effects of aerosols on climate change Air pollution and health Pharmaceutical aerosols and pulmonary drug delivery Bioaerosols and hospital infections Particle emissions from vehicles The safety of emerging nanomaterials Radioactive aerosols: tracers of atmospheric processes With the importance of this topic brought to the public's attention after the eruption of the Icelandic volcano Eyjafjallajökull, this book provides a timely, concise and accessible overview of the many facets of aerosol science.
Aerosols in workplace atmospheres have been - and continue to be - a major focus of industrial hygiene. Although there are many existing texts on aerosol science and on occupational health respectively, this new book sets out to be complementary to these and to provide a link between the two fields. In particular, the central concept of worker exposure leads to a structured approach which draws together wide-ranging aspects of aerosol science within the occupational health framework. Introductory chapters are concerned with the nature and properties of aerosols, and how they are generated in the occupational environment. The book then goes on to provide a description of the fundamental mechanical properties of aerosols, in particular those mechanical properties associated with the motion of airborne particles (which govern particle transport, inhalation, deposition, sampling and control). There follows a description of the optical properties of workplace aerosols since these are important in the visual appearance of aerosols and in many aspects of measurement. The central core of the book deals with the processes which govern the nature of exposure to and the subsequent fate and effects of airborne particles, leading to a rational framework for standards, measurement and control. Finally, a chapter is added which relates what has been said about aerosols to gaseous and vapour contaminants. The book is aimed at graduate students and practitioners in industrial hygiene and other occupational (and environmental) health disciplines.
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
An Introduction to Clouds provides a fundamental understanding of clouds, ranging from cloud microphysics to the large-scale impacts of clouds on climate. On the microscale, phase changes and ice nucleation are covered comprehensively, including aerosol particles and thermodynamics relevant for the formation of clouds and precipitation. At larger scales, cloud dynamics, mid-latitude storms and tropical cyclones are discussed leading to the role of clouds on the hydrological cycle and climate. Each chapter ends with problem sets and multiple-choice questions that can be completed online, and important equations are highlighted in boxes for ease of reference. Combining mathematical formulations with qualitative explanations of underlying concepts, this accessible book requires relatively little previous knowledge, making it ideal for advanced undergraduate and graduate students in atmospheric science, environmental sciences and related disciplines.
During the past 30 years, there have been advances in the understanding of multi-particle hydrodynamic interactions in the field of aerosol dynamics. Aerosol dynamics is developing from isolated-particle stage into multi-particle stage. This book reviews these progresses, and the subjects it covers include sedimentation, coagulation, mass or heat transfer, effective viscosity, and the evolution of the size distribution.
An aerosol is a suspension of fine particles in a gas, usually air, and is generally taken to include both solid and liquid particles with dimensions ranging from a few nanometres up to around 100 micrometres in diameter. Aerosol sicence is the study of the physics and chemistry of aerosol behaviour and this includes techniques of generating particles of nanometre and micrometre dimensions: size classification and measurement, transport and deposition properties: chemical properties of aerosols in the atmosphere and in industry, as well as health effects from inhalation and industrial gas cleaning technology. Aerosols have important commercial implications, e.g. pressure-packaged `aerosol' products, agricultural sprays, atmospheric visibility and high technology materials and knowledge of aerosol properties is important in a wide range of disciplines, including industrial hygiene, air pollution, medicine, agriculture, meteorology and geochemistry. Written by an international team of contributors, this book forms a timely, concise and accessible overview of aerosol science and technology. Chemists, technologists and engineers new to aerosol science will find this book an essential companion in their studies of the subject. Those more familiar with aerosols will use it as an essential source of reference.
Aerosol Science and Technology: History and Reviews captures an exciting slice of history in the evolution of aerosol science. It presents in-depth biographies of four leading international aerosol researchers and highlights pivotal research institutions in New York, Minnesota, and Austria. One collection of chapters reflects on the legacy of the Pasadena smog experiment, while another presents a fascinating overview of military applications and nuclear aerosols. Finally, prominent researchers offer detailed reviews of aerosol measurement, processes, experiments, and technology that changed the face of aerosol science. This volume is the third in a series and is supported by the American Association for Aerosol Research (AAAR) History Working Group, whose goal is to produce archival books from its symposiums on the history of aerosol science to ensure a lasting record. It is based on papers presented at the Third Aerosol History Symposium on September 8 and 9, 2006, in St. Paul, Minnesota, USA.
Aerosol Measurement: Principles, Techniques, and Applications Third Edition is the most detailed treatment available of the latest aerosol measurement methods. Drawing on the know-how of numerous expert contributors; it provides a solid grasp of measurement fundamentals and practices a wide variety of aerosol applications. This new edition is updated to address new and developing applications of aerosol measurement, including applications in environmental health, atmospheric science, climate change, air pollution, public health, nanotechnology, particle and powder technology, pharmaceutical research and development, clean room technology (integrated circuit manufacture), and nuclear waste management.