Download Free Introduction Of Intelligent Machine Fault Diagnosis And Prognosis Book in PDF and EPUB Free Download. You can read online Introduction Of Intelligent Machine Fault Diagnosis And Prognosis and write the review.

Condition monitoring, fault diagnosis and prognosis of machinery have received considerable attention in recent years and they are increasingly becoming important in industry because of the need to increase reliability and decrease possible loss of production due to the fault of equipments. Early fault detection, diagnosis and prognosis can increase equipment availability and performance, reduce consequential damage, prolong machine life and reduce spare parts inventories and break down maintenance. With the development of the artificial intelligence techniques, many intelligent systems have been employed to assist the maintenance management task to correctly interpret the fault data. The book is very easy to study; even if the reader is a beginner in the fault diagnosis area, they do not need special prerequisite knowledge to understand the contents of this book. The book is equipped with software under MATLAB and offers many examples which are related to fault diagnosis processes. It will be very useful to readers who want to study feature-based intelligent machine fault diagnosis and prognosis techniques. The book is dedicated to graduate students of mechanical and electrical engineering, computer science and for practising engineers.
Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The main contents include multi-domain signal processing and feature extraction, intelligent diagnosis models, clustering algorithms, hybrid intelligent diagnosis strategies, and RUL prediction approaches, etc. This book presents fundamental theories and advanced methods of identifying the occurrence, locations, and degrees of faults, and also includes information on how to predict the RUL of rotating machinery. Besides experimental demonstrations, many application cases are presented and illustrated to test the methods mentioned in the book. This valuable reference provides an essential guide on machinery fault diagnosis that helps readers understand basic concepts and fundamental theories. Academic researchers with mechanical engineering or computer science backgrounds, and engineers or practitioners who are in charge of machine safety, operation, and maintenance will find this book very useful. - Provides a detailed background and roadmap of intelligent diagnosis and RUL prediction of rotating machinery, involving fault mechanisms, vibration characteristics, health indicators, and diagnosis and prognostics - Presents basic theories, advanced methods, and the latest contributions in the field of intelligent fault diagnosis and RUL prediction - Includes numerous application cases, and the methods, algorithms, and models introduced in the book are demonstrated by industrial experiences
Expert guidance on theory and practice in condition-based intelligent machine fault diagnosis and failure prognosis Intelligent Fault Diagnosis and Prognosis for Engineering Systems gives a complete presentation of basic essentials of fault diagnosis and failure prognosis, and takes a look at the cutting-edge discipline of intelligent fault diagnosis and failure prognosis technologies for condition-based maintenance. It thoroughly details the interdisciplinary methods required to understand the physics of failure mechanisms in materials, structures, and rotating equipment, and also presents strategies to detect faults or incipient failures and predict the remaining useful life of failing components. Case studies are used throughout the book to illustrate enabling technologies. Intelligent Fault Diagnosis and Prognosis for Engineering Systems offers material in a holistic and integrated approach that addresses the various interdisciplinary components of the field--from electrical, mechanical, industrial, and computer engineering to business management. This invaluably helpful book: * Includes state-of-the-art algorithms, methodologies, and contributions from leading experts, including cost-benefit analysis tools and performance assessment techniques * Covers theory and practice in a way that is rooted in industry research and experience * Presents the only systematic, holistic approach to a strongly interdisciplinary topic
Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems. Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers - mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more. Presents recent advances of theory, technological aspects, and applications of advanced diagnosis and prognosis methodologies in engineering applications Provides a series of the latest results, including fault detection, isolation, fault tolerant control, failure prognosis of components, and more Gives numerical and simulation results in each chapter to reflect engineering practices
This book presents the main concepts, state of the art, advances, and case studies of fault detection, diagnosis, and prognosis. This topic is a critical variable in industry to reach and maintain competitiveness. Therefore, proper management of the corrective, predictive, and preventive politics in any industry is required. This book complements other subdisciplines such as economics, finance, marketing, decision and risk analysis, engineering, etc. The book presents real case studies in multiple disciplines. It considers the main topics using prognostic and subdiscipline techniques. It is essential to link these topics with the areas of finance, scheduling, resources, downtime, etc. to increase productivity, profitability, maintainability, reliability, safety, and availability, and reduce costs and downtime. Advances in mathematics, modeling, computational techniques, dynamic analysis, etc. are employed analytically. Computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques are expertly blended to support the analysis of prognostic problems with defined constraints and requirements. The book is intended for graduate students and professionals in industrial engineering, business administration, industrial organization, operations management, applied microeconomics, and the decisions sciences, either studying maintenance or needing to solve large, specific, and complex maintenance management problems as part of their jobs. The work will also be of interest to researches from academia.
Artificial intelligence (AI) is taking an increasingly important role in our society. From cars, smartphones, airplanes, consumer applications, and even medical equipment, the impact of AI is changing the world around us. The ability of machines to demonstrate advanced cognitive skills in taking decisions, learn and perceive the environment, predict certain behavior, and process written or spoken languages, among other skills, makes this discipline of paramount importance in today's world. Although AI is changing the world for the better in many applications, it also comes with its challenges. This book encompasses many applications as well as new techniques, challenges, and opportunities in this fascinating area.
The main aim of this book is to present a sample of recent research on the application of novel artificial intelligence paradigms to the diagnosis and prognosis of breast cancer. These paradigms include neural networks, fuzzy logic and evolutionary computing. Artificial intelligence techniques offer advantages — such as adaptation, fault tolerance, learning and human-like behavior — over conventional computing techniques. The idea is to combine the pathological, intelligent and statistical approaches to enable simple and accurate diagnosis and prognosis.This book is the first of its kind on the topic of artificial intelligence in breast cancer. It presents the applications of artificial intelligence in breast cancer diagnosis and prognosis, and includes state-of-the-art concepts in the field. It contains contributions from Australia, Germany, Italy, UK and the USA.
In an era of intense competition where plant operating efficiencies must be maximized, downtime due to machinery failure has become more costly. To cut operating costs and increase revenues, industries have an urgent need to predict fault progression and remaining lifespan of industrial machines, processes, and systems. An engineer who mounts an acoustic sensor onto a spindle motor wants to know when the ball bearings will wear out without having to halt the ongoing milling processes. A scientist working on sensor networks wants to know which sensors are redundant and can be pruned off to save operational and computational overheads. These scenarios illustrate a need for new and unified perspectives in system analysis and design for engineering applications. Intelligent Diagnosis and Prognosis of Industrial Networked Systems proposes linear mathematical tool sets that can be applied to realistic engineering systems. The book offers an overview of the fundamentals of vectors, matrices, and linear systems theory required for intelligent diagnosis and prognosis of industrial networked systems. Building on this theory, it then develops automated mathematical machineries and formal decision software tools for real-world applications. The book includes portable tool sets for many industrial applications, including: Forecasting machine tool wear in industrial cutting machines Reduction of sensors and features for industrial fault detection and isolation (FDI) Identification of critical resonant modes in mechatronic systems for system design of R&D Probabilistic small-signal stability in large-scale interconnected power systems Discrete event command and control for military applications The book also proposes future directions for intelligent diagnosis and prognosis in energy-efficient manufacturing, life cycle assessment, and systems of systems architecture. Written in a concise and accessible style, it presents tools that are mathematically rigorous but not involved. Bridging academia, research, and industry, this reference supplies the know-how for engineers and managers making decisions about equipment maintenance, as well as researchers and students in the field.
With increasing demands for efficiency and product quality plus progress in the integration of automatic control systems in high-cost mechatronic and safety-critical processes, the field of supervision (or monitoring), fault detection and fault diagnosis plays an important role. The book gives an introduction into advanced methods of fault detection and diagnosis (FDD). After definitions of important terms, it considers the reliability, availability, safety and systems integrity of technical processes. Then fault-detection methods for single signals without models such as limit and trend checking and with harmonic and stochastic models, such as Fourier analysis, correlation and wavelets are treated. This is followed by fault detection with process models using the relationships between signals such as parameter estimation, parity equations, observers and principal component analysis. The treated fault-diagnosis methods include classification methods from Bayes classification to neural networks with decision trees and inference methods from approximate reasoning with fuzzy logic to hybrid fuzzy-neuro systems. Several practical examples for fault detection and diagnosis of DC motor drives, a centrifugal pump, automotive suspension and tire demonstrate applications.
"Without doubt the best modern and up-to-date text on the topic, wirtten by one of the world leading experts in the field. Should be on the desk of any practitioner or researcher involved in the field of Machine Condition Monitoring" Simon Braun, Israel Institute of Technology Explaining complex ideas in an easy to understand way, Vibration-based Condition Monitoring provides a comprehensive survey of the application of vibration analysis to the condition monitoring of machines. Reflecting the natural progression of these systems by presenting the fundamental material and then moving onto detection, diagnosis and prognosis, Randall presents classic and state-of-the-art research results that cover vibration signals from rotating and reciprocating machines; basic signal processing techniques; fault detection; diagnostic techniques, and prognostics. Developed out of notes for a course in machine condition monitoring given by Robert Bond Randall over ten years at the University of New South Wales, Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications is essential reading for graduate and postgraduate students/ researchers in machine condition monitoring and diagnostics as well as condition monitoring practitioners and machine manufacturers who want to include a machine monitoring service with their product. Includes a number of exercises for each chapter, many based on Matlab, to illustrate basic points as well as to facilitate the use of the book as a textbook for courses in the topic. Accompanied by a website www.wiley.com/go/randall housing exercises along with data sets and implementation code in Matlab for some of the methods as well as other pedagogical aids. Authored by an internationally recognised authority in the area of condition monitoring.