Download Free Interval Valued Regular Neutrosophic Graph Book in PDF and EPUB Free Download. You can read online Interval Valued Regular Neutrosophic Graph and write the review.

In this paper, we present the definitions of regular interval valued neutrosophic graphs and we present the concept of regular interval valued neutrosophic graphs and examine the properties of this new concept and example.
Broumi et al. [15] proposedthe concept of interval-valued neutrosophic graphs. In this research article, we first show that there are some flaws in Broumi et al. [15] ’s definition, which cannot be applied in network models. We then modify the definition of an interval-valued neutrosophic graph. Further, we present some operations on interval-valued neutrosophic graphs. Moreover, we discuss the concepts of self-complementary and self weak complementary interval-valued neutrosophic complete graphs. Finally, we describe regularity of interval-valued neutrosophic graphs.
In this paper, we define the regular and the totally regular interval valued neutrosophic hypergraphs, and discuss the order and size along with properties of the regular and the totally regular single valued neutrosophic hypergraphs. We extend work to completeness of interval valued neutrosophic hypergraphs.
We first introduce the concept of interval-valued neutrosophic competition graphs. We then discuss certain types, including kcompetition interval-valued neutrosophic graphs, p-competition intervalvalued neutrosophic graphs and m-step interval-valued neutrosophic competition graphs. Moreover, we present the concept of m-step intervalvalued neutrosophic neighbourhood graphs.
Fuzzy graph theory is a useful and well-known tool to model and solve many real-life optimization problems. Since real-life problems are often uncertain due to inconsistent and indeterminate information, it is very hard for an expert to model those problems using a fuzzy graph. A neutrosophic graph can deal with the uncertainty associated with the inconsistent and indeterminate information of any real-world problem, where fuzzy graphs may fail to reveal satisfactory results.
In this article, we combine the interval valued neutrosophic soft set and graph theory. We introduce the notions of interval valued neutrosophic soft graphs, strong interval valued neutrosophic graphs, complete interval valued neutrosophic graphs, and investigate some of their related properties. We study some operations on interval valued neutrosophic soft graphs. We also give an application of interval valued neutrosophic soft graphs into a decision making problem. We hold forth an algorithm to solve decision making problems by using interval valued neutrosophic soft graphs.
In this research article, we introduce certain notions of interval-valued neutrosophic graph structures. We elaborate the concepts of interval-valued neutrosophic graph structures with examples.
The interval valued neutrosophic graphs are generalizations of the fuzzy graphs, interval fuzzy graphs, interval valued intuitionstic fuzzy graphs, and single valued neutrosophic graphs. Previously, several results have been proved on the isolated graphs and the complete graphs. In this paper, a necessary and sufficient condition for an interval valued neutrosophic graph to be an isolated interval valued neutrosophic graph is proved.
In recent time graphical analytics of uncertainty and indeterminacy has become major concern for data analytics researchers. In this direction, the mathematical algebra of neutrosophic graph is extended to interval-valued neutrosophic graph. However, building the interval-valued neutrosophic graphs, its spectrum and energy computation is addressed as another issues by research community of neutrosophic environment. To resolve this issue the current paper proposed some related mathematical notations to compute the spectrum and energy of interval-valued neutrosophic graph using the MATAB.
Combining the single valued neutrosophic set with graph theory, a new graph model emerges, called single valued neutrosophic graph.