Download Free Interval Valued Neutrosophic Parameterized Soft Set Theory And Its Decision Making Book in PDF and EPUB Free Download. You can read online Interval Valued Neutrosophic Parameterized Soft Set Theory And Its Decision Making and write the review.

In this work, we present definition of interval valued neutrosophic parameterized (IVNP-)soft set and its operations. Then we define parameter reduction method for IVNP-soft set.We also give an example which shows that they can be successfully applied to problem that contains indeterminacy.
This volume is a collection of seven papers, written by different authors and co-authors (listed in the order of the papers): A. A. Salama, F. Smarandache, Valeri Kroumov, A. A. A. Agboola, S. A. Akinleye, M. Ali, M. Shabir, M. Naz, I. Deli, Y. Toktas, S. Broumi, Z. Zhang, C. Wu, S. A. Alblowi, C. Dyer. In first paper, the authors proposed Neutrosophic Closed Set and Neutrosophic Continuous Function. Neutrosophic Vector spaces are proposed in the second paper. Neutrosophic Bi-LA-Semigroup and Neutrosophic N-LA-Semigroup is studied in third paper. In fourth paper Neutrosophic Parameterized Soft Relations and Their Applications are introduced. Similarly in fifth paper A novel method for single valued neutrosophic multi-criteria decision making with incomplete weight information are discussed. In paper six, New Neutrosophic Crisp Topological Concept is presented by the authors. Soft Neutrosophic Loops and Their Generalization is given in seventh paper.
This paper presents three novel single-valued neutrosophic soft set (SVNSS) methods. First, we initiate a new axiomatic definition of single-valued neutrosophic similarity measure, which is expressed by single-valued neutrosophic number (SVNN) that will reduce the information loss and remain more original information.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Frequently in real life situations decision making takes place under fuzzy conditions, because the corresponding goals and/or the existing constraints are not clearly defined. Maji et al. introduced in 2002 a method of parametric decision making using soft sets as tools and representing their tabular form as a binary matrix. As we explain here, however, in cases where some or all of the parameters used for the characterization of the elements of the universal set are of fuzzy texture, their method does not give always the best decision making solution. In order to tackle this problem, we modified in earlier works the method of Maji et al. by replacing the binary elements in the tabular form of the corresponding soft set either by grey numbers or by triangular fuzzy numbers. In this work, in order to tackle more efficiently cases in which the decision maker has doubts even about the correctness of the fuzzy/qualitative characterizations assigned to some or all of the elements of the universal set, we replace the binary elements of the tabular form by neutrosophic triplets. Our new, neutrosophic decision making method is illustrated by an application concerning the choice of a new player by a soccer club.
Contributors to current issue (listed in papers’ order): Atena Tahmasbpour Meikola, Arif Mehmood, Wadood Ullah, Said Broumi, Muhammad Imran Khan, Humera Qureshi, Muhammad Ibrar Abbas, Humaira Kalsoom, Fawad Nadeem, T. Chalapathi, L. Madhavi, R. Suresh, S. Palaniammal, Nivetha Martin, Florentin Smarandache, S. A. Edalatpanah, Rafif Alhabib, A. A. Salama, Memet Şahin, Abdullah Kargın, Murat Yücel, Dimacha Dwibrang Mwchahary, Bhimraj Basumatary, R. S. Alghamdi, N. O. Alshehri, Shigui Du, Rui Yong, Jun Ye, Vasantha Kandasamy, Ilanthenral Kandasamy, Muhammad Saeed, Muhammad Saqlain, Asad Mehmood, Khushbakht Naseer, Sonia Yaqoob, Sudipta Gayen, Sripati Jha, Manoranjan Kumar Singh, Ranjan Kumar, Huseyin Kamaci, Shawkat Alkhazaleh, Anas Al-Masarwah, Abd Ghafur Ahmad, Merve Sena Uz, Akbar Rezaei, Mohamed Grida, Rehab Mohamed, Abdelnaser H. Zaid.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)HyperAlgebra, Neutrosophic Triplet Partial Bipolar Metric Spaces, The Neutrosophic Triplet of BI-algebras.
Contributors to current issue (listed in papers’ order): Ibrahim Yasser, Abeer Twakol, A. A. Abd El-Khalek, A. A. Salama, Ahmed Sharaf Al-Din, Issam Abu Al-Qasim, Rafif Alhabib, Magdy Badran, Remya P. B, Francina Shalini, Masoud Ghods, Zahra Rostami, A. Sahaya Sudha, Luiz Flavio Autran Monteiro Gomes, K.R. Vijayalakshmi, Prakasam Muralikrishna, Surya Manokaran, Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar, Rakhal Das, Binod Chandra Tripathy, Nidhi Singh, Avishek Chakraborty, Nilabhra Paul, Deepshikha Sarma, Akash Singh, Uttam Kumar Bera, Fatimah M. Mohammed, Sarah W. Raheem, Muhammad Riaz, Florentin Smarandache, Faruk Karaaslan, Masooma Raza Hashmi, Iqra Nawaz, Kousik Das, Sovan Samanta, Kajal De, Xavier Encarnacion, Nivetha Martin, I. Pradeepa, N. Ramila Gandhi, P. Pandiammal, Aiman Muzaffar, Md Tabrez Nafis, Shahab Saquib Sohail, Abhijit Saha, Jhulaneswar Baidya, Debjit Dutta, Irfan Deli, Said Broumi, Mohsin Khalid, Neha Andaleeb Khalid, Md. Hanif Page, Qays Hatem Imran, Shilpi Pal, S. Satham Hussain, Saeid Jafari, N. Durga, Hanieh Shambayati, Mohsen Shafiei Nikabadi, Seyed Mohammad, Ali Khatami Firouzabadi, Mohammad Rahmanimanesh, Mujahid Abbas, Ghulam Murtaza, K. Porselvi, B. Elavarasan, Y. B. Jun, Chinnadurai V, Sindhu M P, K.Radhika, K. Arun Prakash, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Assia Bakali, Nivetha Martin, R. Dhavaseelan, Ali Hussein Mahmood Al-Obaidi, Suman Das, Surapati Pramanik, Madad Khan, Muhammad Zeeshan, Saima Anis, Abdul Sami Awan, M. Sarwar Sindhu, Tabasam Rashid, Agha Kashif, Rajesh Kumar Saini, Atul Sangal, Manisha.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).