Download Free Interplay Between Magnetic And Dielectric Phenomena At Transition Metal Oxide Interfaces Book in PDF and EPUB Free Download. You can read online Interplay Between Magnetic And Dielectric Phenomena At Transition Metal Oxide Interfaces and write the review.

Novel phenomena and functionalities at epitaxial complex oxide heterostructures have been attracting huge scientific attention because of the intriguing fundamental physics as well as potential for technological applications that they embody. Essentially, charge and spin reconstruction at the interface can lead to exotic properties, which are completely different from those inherent to the individual materials, for example, a conductive interface between two insulating materials and interface ferromagnetism in the proximity of an antiferromagnet. The interplay between charge and spin degrees of freedom can be particularly intriguing, leading to a fascinating realm, called multiferroic. In this dissertation, a systematic study is performed on the electronic (charge) and magnetic (spin) interaction/reconstruction across the interface of an all-oxide model heterostructure system consisting of the ferromagnet (FM) La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) and the multiferroic (ferroelectric and antiferromagnetic) BiFeO$_3$ (BFO). The study demonstrates two pathways of using these exotic interfacial properties to control bulk properties, both the ferroelectricity in BFO and ferromagnetism in LSMO. The journey starts with the growth of high-quality BFO/LSMO heterostructures with unit-cell precision control using reflection high-energy electron diffraction combined with pulsed-laser deposition, providing an important platform for the investigation of electronic and magnetic coupling phenomena across the interface. First, we have observed a novel consequence of the interface electronic interaction due to the so-called ``polar discontinuity'', namely, a built-in electrostatic potential accumulates across the heterointerface, and provides deterministic control of ferroelectric polarization states in thin films. This observation suggests a strong, delocalized effect with important implications for future electronics based on such materials. Secondly, we have revealed a strong magnetic coupling at this interface, manifested in the form of an enhanced coercive field as well as a significant exchange-bias coupling. Based on our x-ray magnetic circular dichroism studies, the origin of the exchange-bias coupling is attributed to a novel ferromagnetic state formed in the antiferromagnetic BFO sublattice at the interface with LSMO. Thirdly, using a field effect geometry, we have proposed a pathway to use an electric field to control the magnetism in LSMO in which the ground state of the interfacial ferromagnetic state is strongly correlated with the ferroelectric polarization. Magnetotransport measurements clearly demonstrate a reversible switch/control between two distinct exchange-bias states by isothermally switching the ferroelectric polarization of BFO. This is an important step towards controlling magnetization with the electric field, which may enable a new class of electrically controllable spintronic devices and provide a new basis for producing electrically controllable spin-polarized currents. Finally, combining experimental results with first-principle and phenomenological model calculations, a microscopic model has been proposed to understand the underlying physics of the magnetoelectric coupling, providing further insights on achieving the electric-field control of magnetism. In summary, our studies on the interfacial electronic and magnetic properties at BFO/LSMO heterointerfaces have revealed a strong interplay between the charge, spin, orbital and lattice degrees of freedom at the interface, which will have important implications for a new pathway to use the interface properties to control bulk functionalities (ferroelectric polarization and ferromagnetic magnetization in this study). Such couplings at the interface may be extended to other oxides and will bring into play remarkable physical concepts to this developing field of complex oxide heterointerfaces.
In recent decades, one of the most active and promising areas of condensed matter research has been that of complex oxides. With the advent of new growth techniques such as pulsed laser deposition and molecular beam epitaxy, a wealth of new magnetic and electronic ground states have emerged in complex oxide heterostructures. The wide variety of ground states in complex oxides is well known and generally attributed to the unprecedented variety of valence, structure, and bonding available in these systems. The tunability of this already diverse playground of states and interactions is greatly multiplied in thin films and heterostructures by the addition of parameters such as substrate induced strain and interfacial electronic reconstruction. Thus, recent studies have shown emergent properties such as the stabilization of ferromagnetism in a paramagnetic system, conductivity at the interface of two insulators, and even exchange bias at the interface between a paramagnet and a ferromagnet. Despite these steps forward, there remains remarkable disagreement on the mechanisms by which these emergent phenomena are stabilized. The contributions of strain, stoichiometry, defects, intermixing, and electronic reconstruction are often very difficult to isolate in thin films and superlattices. This thesis will present model systems for isolating the effects of strain and interfacial electronic interactions on the magnetic state of complex oxides from alternative contributions. We will focus first on SrRuO3, an ideal system in which to isolate substrate induced strain effects. We explore the effects of structural distortions in the simplest case of growth on (100) oriented substrates. We find that parameters including saturated magnetic moment and Curie temperature are all highly tunable through substrate induced lattice distortions. We also report the stabilization of a nonmagnetic spin-zero configuration of Ru4 in tetragonally distorted films under tensile strain. Through growth on (110) and (111) oriented substrates we explore the effects of different distortion symmetries on SrRuO3 and demonstrate the first reported strain induced transition to a high-spin state of Ru4. Finally, we examine the effects of strain on SrRuO3 thin films and demonstrate a completely reversible universal out-of-plane magnetic easy axis on films grown on different substrate orientations. Having demonstrated the ability to tune nearly every magnetic parameter of SrRuO3 through strain, we turn to magnetic properties at interfaces. We study the emergent interfacial ferromagnetism in superlattices of the paramagnetic metal CaRuO3 and the antiferromagnetic insulator CaMnO3 and demonstrate that the interfacial ferromagnetic layer in this system is confined to a single unit cell of CaMnO3 at the interface. We discuss the remarkable oscillatory dependence of the saturated magnetic moment on the thickness of the CaMnO3 layers and explore mechanisms by which this oscillation may be stabilized. We find long range coherence of the antiferromagnetism of the CaMnO3 layers across intervening layers of paramagnetic CaRuO3. Finally, we utilize the system of LaNiO3/CaMnO3 to separate the effects of intermixing and interfacial electronic reconstruction and conclusively demonstrate intrinsic interfacial ferromagnetism at the interface between a paramagnetic metal and an antiferromagnetic insulator. We find that the emergent ferromagnetism is stabilized through interfacial double exchange and that the leakage of conduction electrons from the paramagnetic metal to the antiferromagnetic insulator is critical to establishing the ferromagnetic ground state.
Functional oxides are used both as insulators and metallic conductors in key applications across all industrial sectors. This makes them attractive candidates in modern technology ? they make solar cells cheaper, computers more efficient and medical instrumentation more sensitive. Based on recent research, experts in the field describe novel materials, their properties and applications for energy systems, semiconductors, electronics, catalysts and thin films. This monograph is divided into 6 parts which allows the reader to find their topic of interest quickly and efficiently. * Magnetic Oxides * Dopants, Defects and Ferromagnetism in Metal Oxides * Ferroelectrics * Multiferroics * Interfaces and Magnetism * Devices and Applications This book is a valuable asset to materials scientists, solid state chemists, solid state physicists, as well as engineers in the electric and automotive industries.