Download Free International Journal Of Mathematical Combinatorics Volume 3 2008 Book in PDF and EPUB Free Download. You can read online International Journal Of Mathematical Combinatorics Volume 3 2008 and write the review.

journal which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
Papers on Extending Homomorphism Theorem to Multi-Systems, A Double Cryptography Using the Smarandache Keedwell Cross Inverse Quasigroup, the Time-like Curves of Constant Breadth in Minkowski 3-Space, Actions of Multi-groups on Finite Sets, and other topics. Contributors: Linfan Mao, Zhongfu Zhang, Enqiang Zhu, Baogen Xu, S. Arumugam, I. Sahul Hamid, A.P. Santhakumaran, S.V. Ullas Chandran, M.M.M. Jaradat, M.F. Janem, A.J. Alawneh, and others.
The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics.
International J. Mathematical Combinatorics is a fully refereed international journal which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe. The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Other applications of Smarandache multi-space and combinatorics.
Contents A Calculus and Algebra Derived from Directed Graph Algebras By Kh.Shahbazpour and Mahdihe Nouri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01 Superior Edge Bimagic Labelling By R.Jagadesh and J.Baskar Babujee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Spherical Images of Special Smarandache Curves in E3 By Vahide Bulut and Ali Caliskan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Variations of Orthogonality of Latin Squares By Vadiraja Bhatta G.R. and B.R.Shankar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 The Minimum Equitable Domination Energy of a Graph By P.Rajendra and R.Rangarajan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Some Results on Relaxed Mean Labeling By V.Maheswari, D.S.T.Ramesh and V.Balaji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Split Geodetic Number of a Line Graph By Venkanagouda M Goudar and Ashalatha K.S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Skolem Difference Odd Mean Labeling For Some Simple Graphs By R.Vasuki, J.Venkateswari and G.Pooranam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Radio Number for Special Family of Graphs with Diameter 2, 3 and 4 By M.Murugan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Vertex-to-Edge-set Distance Neighborhood Pattern Matrices By Kishori P.Narayankar and Lokesh S. B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Extended Results on Complementary Tree Domination Number and Chromatic Number of Graphs By S.Muthammai and P.Vidhya . . . . . . . . . . . . . . . . . . . . . . . 116 On Integer Additive Set-Sequential Graphs By N.K.Sudev and K.A.Germina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125