Download Free Interface Oral Health Science 2014 Book in PDF and EPUB Free Download. You can read online Interface Oral Health Science 2014 and write the review.

The Tohoku University Graduate School of Dentistry first introduced the concept of “Interface Oral Health Science”, designed to establish and maintain healthy oral cavities, which are home to a number of mixed systems. Included in those systems are: (1) host tissues such as teeth, mucosa, muscle and bone, (2) parasites and microorganisms cohabiting the surfaces of the oral cavity and (3) biomaterials that are used for the rehabilitation of oral functions. In addition, (4) these systems are subject to severe and complex mechanical forces. Therefore, it is critical to promote dental studies that integrate a wide range of interdisciplinary research as medicine, agriculture, material science, engineering, and pharmacology. With this incentive, international symposiums for interface oral health science have been held several times in the past. The concept has since refined and expanded, the result being the “Biosis-Abiosis Intelligent Interface,” and projects aiming at the creation of highly functional and autonomic intelligent interfaces are ongoing. This book brings together a number of studies on incentives and projects by leading authors. Topics include biosis-abiosis interface of dental implants, biomaterials in interface science, biomedical engineering interface and cell manipulation and tissue regeneration. Readers not only from the field of dentistry but also many related areas will find this book a valuable resource.
This book is open access under a CC BY 4.0 license. This volume broadens understanding of dentistry and promotes interdisciplinary research across a wide range of related fields, based on the symposium entitled "Innovative Research for Biosis–Abiosis Intelligent Interface 2016". It aims to create highly functional and autonomic intelligent interface by combining highly functional interface science with the technology of an evaluation and a control at the interface, with the various topics of biomaterials, innovation for oral science and application, regenerative oral science, and medical engineering. Since 2002, the Tohoku University Graduate School of Dentistry has hosted “Interface Oral Health Science” several times as the main theme of dental research in the twenty-first century, and this is the sixth proceedings of the symposiums following the ones in 2005, 2007, 2009, 2011, and 2014. This book benefits not only dental scientists but also other health scientists including medical physicians and pharmacologists, material scientists, engineers, and any scientist who is involved in variety of disciplines.
The proceeding of FORIL XIII 2022 Scientific Forum Usakti conjunction with International Conference on Technology of Dental and Medical Sciences (ICTDMS) includes selected full papers that have been peer-reviewed and satisfy the conference's criteria. All studies on health, ethics, and social issues in the field of dentistry and medicine have been presented at the conference alongside clinical and technical presentations. The twelve primary themes that make up its framework include the following: behavioral epidemiologic, and health services, conservative dentistry, dental materials, dento-maxillofacial radiology, medical sciences and technology, oral and maxillofacial surgery, oral biology, oral medicine and pathology, orthodontics, pediatrics dentistry, periodontology, and prosthodontics. This proceeding is likely to be beneficial in keeping dental and medical professionals apprised of the most recent scientific developments.
Advanced Material Interfaces is a state-of-the-art look at innovative methodologies and strategies adopted for interfaces and their applications. The 13 chapters are written by eminent researchers not only elaborate complex interfaces fashioned of solids, liquids, and gases, but also ensures cross-disciplinary mixture and blends of physics, chemistry, materials science, engineering and life sciences. Advanced interfaces operate fundamental roles in essentially all integrated devices. It is therefore of the utmost urgency to focus on how newly-discovered fundamental constituents and interfacial progressions can be materialized and used for precise purposes. Interfaces are associated in wide multiplicity of application spectrum from chemical catalysis to drug functions and the advancement is funnelled by fine-tuning of our fundamental understanding of the interface effects.
The book covers recent advances and progress in understanding both the fundamental science of lasers interactions in materials science, as well as a special emphasis on emerging applications enabled by the irradiation of materials by pulsed laser systems. The different chapters illustrate how, by careful control of the processing conditions, laser irradiation can result in efficient material synthesis, characterization, and fabrication at various length scales from atomically-thin 2D materials to microstructured periodic surface structures. This book serves as an excellent resource for all who employ lasers in materials science, spanning such different disciplines as photonics, photovoltaics, and sensing, to biomedical applications.
This book describes a series of research topics investigated during the 6 years from 2010 through 2015 in the project "Advanced Materials Development and Integration of Novel Structured Metallic and Inorganic Materials". Every section of the book is aimed at understanding the most advanced research by describing details starting with the fundamentals as often as possible. Because both fundamental and cutting-edge topics are contained in this book, it provides a great deal of useful information for chemists as well as for materials scientists and engineers who wish to consider future prospects and innovations. The contents of Novel Structured Metallic and Inorganic Materials are unique in materials science and technology. The project was carried out through the cooperation of research groups in the following six institutes in Japan: the Institute for Materials Research (IMR), Tohoku University; the Materials and Structures Laboratory (MSL), Tokyo Institute of Technology; the Joining and Welding Research Institute (JWRI), Osaka University; the Eco-Topia Science Institute (EST), Nagoya University; the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University; and the Institute for Nanoscience and Nanotechnology (INN), Waseda University. Major objectives of the project included creation of advanced metallic and inorganic materials with a novel structure, as well as development of materials-joining technologies for development of cutting-edge applications as environmental and energy materials, biomedical materials, and electronic materials for contributing to the creation of a safer and more secure society.
Biointegration of Medical Implant Materials, Second Edition, provides a unique and comprehensive review of recent techniques and research into material and tissue interaction and integration. New sections discuss soft tissue integration, with chapters on the biocompatibility of engineered stem cells, corneal tissue engineering, and vascular grafts. Other sections review tissue regeneration, inorganic nanoparticles for targeted drug delivery, alginate based drug delivery devices, and design considerations, with coverage of the biocompatibility of materials and their relevance to drug delivery and tissue engineering. With its distinguished editor and team of international contributors, this book is ideal for medical materials scientists and engineers in industry and academia. - Provides a unique and comprehensive review of recent techniques and research into material and tissue interaction and integration - Discusses soft tissue biointegration, with chapters on the biocompatibility of engineered stem cells, corneal tissue engineering, vascular grafts and replacement materials for facial reconstruction - Includes new information on a variety of tissue regeneration techniques and applications
This fully revised, industry-standard resource offers practical details on every aspect of the fundamentals necessary for understanding thermal spray technology, from powder all the way to the final part. The second edition is presented in a reader-friendly format that is split into four parts. Part I presents a review of thermal spray coating and its position in the broad field of surface modification technologies. Highlights of combustion and thermal plasmas are given with an expanded treatment of in-flight plasma-particle interactions. The second and third parts deal respectively with an updated presentation of thermal spray technologies and coating formation, including solution and suspension plasma spraying. The last part of the book includes a comparative analysis of different thermal spray processes, which is essential for the optimal selection of the appropriate thermal spray process in a given application. Coverage of system integration has been expanded with the addition of a detailed discussion of online instrumentation and process diagnostics and numerous examples of industrial scale spray booth designs. Attention is also given to coating finishing and health and safety issues. An extensive review is presented of thermal spray applications grouped in terms of process objectives and present use in different industrial sectors. This book will serve as an invaluable resource as a textbook for graduate courses in the field and as an exhaustive reference for professionals involved in the thermal spray field.
This contributed volume is dedicated towards the progress achieved within the last years in all areas of Cell Culture Engineering and Technology. It comprises contributions of active researchers in the field of cell culture development for the production of recombinant proteins, cell line development, cell therapy and gene therapy, with consideration of media development, process scale-up, reactor design, monitoring and control and model-assisted strategies for process design. The knowledge and expertise of the authors cover disciplines like cell biology, engineering, biotechnology and biomedical sciences. This book is conceived for graduate students, postdoctoral fellows and researchers interested in the latest developments in Cell Engineering.