Download Free Interactions Between The Hydrological Cycle And Atmospheric Chemistry Book in PDF and EPUB Free Download. You can read online Interactions Between The Hydrological Cycle And Atmospheric Chemistry and write the review.

The land-atmosphere exchange of atmospheric trace gases is sensitive to meteorological conditions and climate change. It contributes in turn to the atmospheric radiative forcing through its effects on tropospheric chemistry. The interactions between the hydrological cycle and atmospheric processes are intricate and often involve different levels of feedbacks. The Earth system model EMAC is used in this thesis to assess the direct role of the land surface components of the terrestrial hydrological cycle in the emissions, deposition and transport of key trace gases that control tropospheric chemistry. It is also used to examine its indirect role in changing the tropospheric chemical composition through the feedbacks between the atmospheric and the terrestrial branches of the hydrological cycle. Selected features of the hydrological cycle in EMAC are evaluated using observations from different data sources. The interactions between precipitation and the water vapor column, from the atmospheric branch of the hydrological cycle, and evapotranspiration, from its terrestrial branch, are assessed specially for tropical regions. The impacts of changes in the land surface hydrology on surface exchanges and the oxidizing chemistry of the atmosphere are assessed through two sensitivity simulations. In the first, a new parametrization for rainfall interception in the densely vegetated areas in the tropics is implemented, and its effects are assessed. The second study involves the application of a soil moisture forcing that replaces the model calculated soil moisture. Both experiments have a large impact on the local hydrological cycle, dry deposition of soluble and insoluble gases, emissions of isoprene through changes in surface temperature and the Planetary Boundary Layer height. Additionally the soil moisture forcing causes changes in local vertical transport and large-scale circulation. The changes in trace gas exchanges affect the oxidation capacity of the atmosphere throug.
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space (National Academies Press, 2018) provides detailed guidance on how relevant federal agencies can ensure that the United States receives the maximum benefit from its investments in Earth observations from space, while operating within realistic cost constraints. This short booklet, designed to be accessible to the general public, provides a summary of the key ideas and recommendations from the full decadal survey report.
This book is a natural extension of the SCOPE (Scientific Committee of Problems on the Environment) volumes on the carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) biogeochemical cycles and their interactions (Likens, 1981; Bolin and Cook, 1983). Substantial progress in the knowledge of these cycles has been made since publication of those volumes. In particular, the nature and extent of biological and inorganic interactions between these cycles have been identified, positive and negative feedbacks recognized and the relationship between the cycles and global environmental change preliminarily elucidated. In March 1991, a NATO Advanced Research Workshop was held for one week in Melreux, Belgium to reexamine the biogeochemical cycles of C, N, P and S on a variety of time and space scales from a holistic point of view. This book is the result of that workshop. The biogeochemical cycles of C, N, P and S are intimately tied to each other through biological productivity and subsequently to problems of global environmental change. These problems may be the most challenging facing humanity in the 21 st century. In the broadest sense, "global change" encompasses both changes to the status of the large, globally connected atmospheric, oceanic and terrestrial environments (e. g. tropospheric temperature increase) and change occurring as the result of nearly simultaneous local changes in many regions of the world (e. g. eutrophication).
The oceans and atmosphere interact through various processes, including the transfer of momentum, heat, gases and particles. In this book leading international experts come together to provide a state-of-the-art account of these exchanges and their role in the Earth-system, with particular focus on gases and particles. Chapters in the book cover: i) the ocean-atmosphere exchange of short-lived trace gases; ii) mechanisms and models of interfacial exchange (including transfer velocity parameterisations); iii) ocean-atmosphere exchange of the greenhouse gases carbon dioxide, methane and nitrous oxide; iv) ocean atmosphere exchange of particles and v) current and future data collection and synthesis efforts. The scope of the book extends to the biogeochemical responses to emitted / deposited material and interactions and feedbacks in the wider Earth-system context. This work constitutes a highly detailed synthesis and reference; of interest to higher-level university students (Masters, PhD) and researchers in ocean-atmosphere interactions and related fields (Earth-system science, marine / atmospheric biogeochemistry / climate). Production of this book was supported and funded by the EU COST Action 735 and coordinated by the International SOLAS (Surface Ocean- Lower Atmosphere Study) project office.
This book considers an array of state-of-the-art coupling and modelling concepts. First the relevant Earth system cycles are presented, followed by a discussion on scale issues and multiple equilibria. Inter- and intra-compartmental coupling is addressed, along with a debate on non-linearities and questions of parameterisation. Several applications are presented, where a focus is on cases where the hydrological cycle plays a central role.
The research of the last decade has demonstrated that ecosystems and human systems are influenced by multiple factors, including climate, land use, and the by-products of resource use. Understanding the net impact of a suite of simultaneously occurring environmental changes is essential for developing effective response strategies. Using case studies on drought and a wide range of atmosphere-ecosystem interactions, a workshop was held in September 2005 to gather different perspectives on multiple stress scenarios. The overarching lesson of the workshop is that society will require new and improved strategies for coping with multiple stresses and their impacts on natural socioeconomic systems. Improved communication among stakeholders; increased observations (especially at regional scales); improved model and information systems; and increased infrastructure to provide better environmental monitoring, vulnerability assessment, and response analysis are all important parts of moving toward better understanding of and response to situations involving multiple stresses. During the workshop, seven near-term opportunities for research and infrastructure that could help advance understanding of multiple stresses were also identified.