Download Free Intelligent Iot Systems In Personalized Health Care Book in PDF and EPUB Free Download. You can read online Intelligent Iot Systems In Personalized Health Care and write the review.

Smart healthcare technology improves the diagnosis and treatment of patients, provides easy access to medical facilities and emergency care services, and minimizes the gaps between patients and healthcare providers. While clinical data protection remains a major challenge, innovations such as the internet of medical things and smart healthcare systems increase the efficiency and quality of patient care. Healthcare technology can only become faster, more profitable, and more flexible as additional research on its advancements is conducted and collected. Smart Medical Data Sensing and IoT Systems Design in Healthcare is an essential reference source that focuses on robust and easy solutions for the delivery of medical information from patients to doctors and explores low-cost, high-performance, highly efficient, deployable IoT system options in healthcare systems. Featuring research on topics such as hospital management systems, electronic health records, and bio-signals, this book is ideally designed for technologists, engineers, scientists, clinicians, biomedical engineers, hospital directors, doctors, nurses, healthcare practitioners, telemedical agents, students, and academicians seeking coverage on the latest technological developments in medical data analysis and connectivity.
Intelligent IoT Systems in Personalized Health Care delivers a significant forum for the technical advancement of IoMT learning in parallel computing environments across biomedical engineering diversified domains and its applications. Pursuing an interdisciplinary approach, the book focuses on methods used to identify and acquire valid, potentially useful knowledge sources. The book presents novel, in-depth, fundamental research contributions from a methodological/application perspective to help readers understand the fusion of AI with IoT and its capabilities in solving a diverse range of problems for biomedical engineering and its real-world personalized health care applications. The book is well suited for researchers exploring the significance of IoT based architecture to perform predictive analytics of user activities in sustainable health. - Presents novel, in-depth, fundamental research contributions from a methodological/application perspective to help readers understand the fusion of AI with IoT - Illustrates state-of-the-art developments in new theories and applications of IoMT techniques as applied to parallel computing environments in biomedical engineering systems - Presents concepts and technologies successfully used in the implementation of today's intelligent data-centric IoT systems and Edge-Cloud-Big data
Healthcare is an industry that has seen great advancements in personalized services through big data analytics. Despite the application of smart devices in the medical field, the mass volume of data that is being generated makes it challenging to correctly diagnose patients. This has led to the implementation of precise algorithms that can manage large amounts of information and successfully use smart living in medical environments. Professionals worldwide need relevant research on how to successfully implement these smart technologies within their own personalized healthcare processes. Applications of Deep Learning and Big IoT on Personalized Healthcare Services is a pivotal reference source that provides a collection of innovative research on the analytical methods and applications of smart algorithms for the personalized treatment of patients. While highlighting topics including cognitive computing, natural language processing, and supply chain optimization, this book is ideally designed for network designers, analysts, technology specialists, medical professionals, developers, researchers, academicians, and post-graduate students seeking relevant information on smart developments within individualized healthcare.
This book aims to provide a detailed understanding of IoMT-supported applications while engaging premium smart computing methods and improved algorithms in the field of computer science. It contains thirteen chapters discussing various applications under the umbrella of the Internet of Medical Things. These applications geared towards IoMT cloud analysis, machine learning, computer vision and deep learning have enabled the evaluation of the proposed solutions.
This book reveals the applications of AI and IoT in smart healthcare and medical systems. It provides core principles, algorithms, protocols, emerging trends, security problems, and the latest e-healthcare services findings. The book also provides case studies and discusses how AI and IoT applications such as wireless devices, sensors, and deep learning could play a major role in assisting patients, doctors, and pharmaceutical staff. It focuses on how to use AI and IoT to keep patients safe and healthy and, at the same time, empower physicians to deliver superlative care. This book is written for researchers and practitioners working in the information technology, computer science, and medical equipment manufacturing industry for products and services having basic- and high-level AI and IoT applications. The book is also a useful guide for academic researchers and students.
This book presents the state of the art of Internet of Things (IoT) from the perspective of healthcare and Ambient Assisted Living (AAL). It discusses the emerging technologies in healthcare services used for healthcare professionals and patients for enhanced living environments and public health. The topics covered in this book include emerging eHealth IoT applications, Internet of Medical Things, health sensors, and wearable sensors for pervasive and personalized healthcare, and smart homes applications for enhanced health and well-being. The book also presents various ideas for the design and development of IoT solutions for healthcare and AAL. It will be useful for bioengineers and professionals working in the areas of healthcare as well as health informatics.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Health surveillance and intelligence play an important role in modern health systems as more data must be collected and analyzed. It is crucial that this data is interpreted and analyzed effectively and efficiently in order to assist with diagnoses and predictions. Diagnostic Applications of Health Intelligence and Surveillance Systems is an essential reference book that examines recent studies that are driving artificial intelligence in the health sector and helping practitioners to predict and diagnose diseases. Chapters within the book focus on health intelligence and how health surveillance data can be made useful and meaningful. Covering topics that include computational intelligence, data analytics, mobile health, and neural networks, this book is crucial for healthcare practitioners, IT specialists, academicians, researchers, and students.
When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.
Intelligent IoT Systems in Personalized Health Care delivers a significant forum for the technical advancement of IoMT learning in parallel computing environments across biomedical engineering diversified domains and its applications. Pursuing an interdisciplinary approach, the book focuses on methods used to identify and acquire valid, potentially useful knowledge sources. The book presents novel, in-depth, fundamental research contributions from a methodological/application perspective to help readers understand the fusion of AI with IoT and its capabilities in solving a diverse range of problems for biomedical engineering and its real-world personalized health care applications. The book is well suited for researchers exploring the significance of IoT based architecture to perform predictive analytics of user activities in sustainable health. Presents novel, in-depth, fundamental research contributions from a methodological/application perspective to help readers understand the fusion of AI with IoT Illustrates state-of-the-art developments in new theories and applications of IoMT techniques as applied to parallel computing environments in biomedical engineering systems Presents concepts and technologies successfully used in the implementation of today's intelligent data-centric IoT systems and Edge-Cloud-Big data