Download Free Intelligent Control And Automation Book in PDF and EPUB Free Download. You can read online Intelligent Control And Automation and write the review.

Introducton; Methology of knowledge representation; General inference principles; Hierarchical control systems; Expert control systems; Fuzzy control systems; Neurocontrol systems; Learning control systems; Intelligente control systems in application; Prospectives of intelligente control; References; Bibliography; Subject index.
As robotic systems make their way into standard practice, they have opened the door to a wide spectrum of complex applications. Such applications usually demand that the robots be highly intelligent. Future robots are likely to have greater sensory capabilities, more intelligence, higher levels of manual dexter ity, and adequate mobility, compared to humans. In order to ensure high-quality control and performance in robotics, new intelligent control techniques must be developed, which are capable of coping with task complexity, multi-objective decision making, large volumes of perception data and substantial amounts of heuristic information. Hence, the pursuit of intelligent autonomous robotic systems has been a topic of much fascinating research in recent years. On the other hand, as emerging technologies, Soft Computing paradigms consisting of complementary elements of Fuzzy Logic, Neural Computing and Evolutionary Computation are viewed as the most promising methods towards intelligent robotic systems. Due to their strong learning and cognitive ability and good tolerance of uncertainty and imprecision, Soft Computing techniques have found wide application in the area of intelligent control of robotic systems.
A large international conference on Advances in Intelligent Control and Computer Engineering was held in Hong Kong, March 17-19, 2010, under the auspices of the International MultiConference of Engineers and Computer Scientists (IMECS 2010). The IMECS is organized by the International Association of Engineers (IAENG). Intelligent Control and Computer Engineering contains 25 revised and extended research articles written by prominent researchers participating in the conference. Topics covered include artificial intelligence, control engineering, decision supporting systems, automated planning, automation systems, systems identification, modelling and simulation, communication systems, signal processing, and industrial applications. Intelligent Control and Computer Engineering offers the state of the art of tremendous advances in intelligent control and computer engineering and also serves as an excellent reference text for researchers and graduate students, working on intelligent control and computer engineering.
This book is concerned with Intelligent Control methods and applications. The field of intelligent control has been expanded very much during the recent years and a solid body of theoretical and practical results are now available. These results have been obtained through the synergetic fusion of concepts and techniques from a variety of fields such as automatic control, systems science, computer science, neurophysiology and operational research. Intelligent control systems have to perform anthropomorphic tasks fully autonomously or interactively with the human under known or unknown and uncertain environmental conditions. Therefore the basic components of any intelligent control system include cognition, perception, learning, sensing, planning, numeric and symbolic processing, fault detection/repair, reaction, and control action. These components must be linked in a systematic, synergetic and efficient way. Predecessors of intelligent control are adaptive control, self-organizing control, and learning control which are well documented in the literature. Typical application examples of intelligent controls are intelligent robotic systems, intelligent manufacturing systems, intelligent medical systems, and intelligent space teleoperators. Intelligent controllers must employ both quantitative and qualitative information and must be able to cope with severe temporal and spatial variations, in addition to the fundamental task of achieving the desired transient and steady-state performance. Of course the level of intelligence required in each particular application is a matter of discussion between the designers and users. The current literature on intelligent control is increasing, but the information is still available in a sparse and disorganized way.
In industrial engineering and manufacturing, control of individual processes and systems is crucial to developing a quality final product. Rapid developments in technology are pioneering new techniques of research in control and automation with multi-disciplinary applications in electrical, electronic, chemical, mechanical, aerospace, and instrumentation engineering. The Handbook of Research on Advanced Intelligent Control Engineering and Automation presents the latest research into intelligent control technologies with the goal of advancing knowledge and applications in various domains. This text will serve as a reference book for scientists, engineers, and researchers, as it features many applications of new computational and mathematical tools for solving complicated problems of mathematical modeling, simulation, and control.
"Recent Advances in Intelligent Control Systems" gathers contributions from workers around the world and presents them in four categories according to the style of control employed: fuzzy control; neural control; fuzzy neural control; and intelligent control. The contributions illustrate the interdisciplinary antecedents of intelligent control and contrast its results with those of more traditional control methods. A variety of design examples, drawn primarily from robotics and mechatronics but also representing process and production engineering, large civil structures, network flows, and others, provide instances of the application of computational intelligence for control. Presenting state-of-the-art research, this collection will be of benefit to researchers in automatic control, automation, computer science (especially artificial intelligence) and mechatronics while graduate students and practicing control engineers working with intelligent systems will find it a good source of study material.
Intelligent control is a rapidly developing, complex and challenging field with great practical importance and potential. Because of the rapidly developing and interdisciplinary nature of the subject, there are only a few edited volumes consisting of research papers on intelligent control systems but little is known and published about the fundamentals and the general know-how in designing, implementing and operating intelligent control systems. Intelligent control system emerged from artificial intelligence and computer controlled systems as an interdisciplinary field. Therefore the book summarizes the fundamentals of knowledge representation, reasoning, expert systems and real-time control systems and then discusses the design, implementation verification and operation of real-time expert systems using G2 as an example. Special tools and techniques applied in intelligent control are also described including qualitative modelling, Petri nets and fuzzy controllers. The material is illlustrated with simple examples taken from the field of intelligent process control.
This book reflects the work of top scientists in the field of intelligent control and its applications, prognostics, diagnostics, condition based maintenance and unmanned systems. It includes results, and presents how theory is applied to solve real problems.
Intelligent systems are required to facilitate the use of information provided by the internet and other computer based technologies. This book describes the state-of-the-art in Intelligent Automation and Systems Engineering. Topics covered include Intelligent decision making, Automation, Robotics, Expert systems, Fuzzy systems, Knowledge-based systems, Knowledge extraction, Large database management, Data analysis tools, Computational biology, Optimization algorithms, Experimental designs, Complex system identification, Computational modeling, Systems simulation, Decision modeling, and industrial applications.
This book is concerned with Artificial Intelligence (AI) concepts and techniques as applied to industrial decision making, control and automation problems. The field of AI has been expanded enormously during the last years due to that solid theoretical and application results have accumulated. During the first stage of AI development most workers in the field were content with illustrations showing ideas at work on simple problems. Later, as the field matured, emphasis was turned to demonstrations that showed the capability of AI techniques to handle problems of practical value. Now, we arrived at the stage where researchers and practitioners are actually building AI systems that face real-world and industrial problems. This volume provides a set of twenty four well-selected contributions that deal with the application of AI to such real-life and industrial problems. These contributions are grouped and presented in five parts as follows: Part 1: General Issues Part 2: Intelligent Systems Part 3: Neural Networks in Modelling, Control and Scheduling Part 4: System Diagnostics Part 5: Industrial Robotic, Manufacturing and Organizational Systems Part 1 involves four chapters providing background material and dealing with general issues such as the conceptual integration of qualitative and quantitative models, the treatment of timing problems at system integration, and the investigation of correct reasoning in interactive man-robot systems.