Download Free Intelligent Analysis Fractional Inequalities And Approximations Expanded Book in PDF and EPUB Free Download. You can read online Intelligent Analysis Fractional Inequalities And Approximations Expanded and write the review.

This book focuses on computational and fractional analysis, two areas that are very important in their own right, and which are used in a broad variety of real-world applications. We start with the important Iyengar type inequalities and we continue with Choquet integral analytical inequalities, which are involved in major applications in economics. In turn, we address the local fractional derivatives of Riemann–Liouville type and related results including inequalities. We examine the case of low order Riemann–Liouville fractional derivatives and inequalities without initial conditions, together with related approximations. In the next section, we discuss quantitative complex approximation theory by operators and various important complex fractional inequalities. We also cover the conformable fractional approximation of Csiszar’s well-known f-divergence, and present conformable fractional self-adjoint operator inequalities. We continue by investigating new local fractional M-derivatives that share all the basic properties of ordinary derivatives. In closing, we discuss the new complex multivariate Taylor formula with integral remainder. Sharing results that can be applied in various areas of pure and applied mathematics, the book offers a valuable resource for researchers and graduate students, and can be used to support seminars in related fields.
This book presents generalized Caputo fractional Ostrowski and Grüss-type inequalities involving several Banach algebra valued functions. Furthermore, the author gives generalized Canavati fractional Ostrowski, Opial, Grüss, and Hilbert-Pachpatte-type inequalities for multiple Banach algebra valued functions. By applying the p-Schatten norms over the von Neumann–Schatten classes, the author produces the analogous refined and interesting inequalities. The author provides many applications. This book’s results are expected to find applications in many areas of pure and applied mathematics, especially in fractional inequalities and fractional differential equations. Other interesting applications are in applied sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries.
This book employs an abstract kernel fractional calculus with applications to Prabhakar and non-singular kernel fractional calculi. The results are univariate and bivariate. In the univariate case, abstract fractional monotone approximation by polynomials and splines is presented. In the bivariate case, the abstract fractional monotone constrained approximation by bivariate pseudo-polynomials and polynomials is given. This book’s results are expected to find applications in many areas of pure and applied mathematics, especially in fractional approximation and fractional differential equations. Other interesting applications are applied in sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines.
This book is about the generalization and modernization of approximation by neural network operators. Functions under approximation and the neural networks are Banach space valued. These are induced by a great variety of activation functions deriving from the arctangent, algebraic, Gudermannian, and generalized symmetric sigmoid functions. Ordinary, fractional, fuzzy, and stochastic approximations are exhibited at the univariate, fractional, and multivariate levels. Iterated-sequential approximations are also covered. The book’s results are expected to find applications in the many areas of applied mathematics, computer science and engineering, especially in artificial intelligence and machine learning. Other possible applications can be in applied sciences like statistics, economics, etc. Therefore, this book is suitable for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
In this book, we introduce the parametrized, deformed and general activation function of neural networks. The parametrized activation function kills much less neurons than the original one. The asymmetry of the brain is best expressed by deformed activation functions. Along with a great variety of activation functions, general activation functions are also engaged. Thus, in this book, all presented is original work by the author given at a very general level to cover a maximum number of different kinds of neural networks: giving ordinary, fractional, fuzzy and stochastic approximations. It presents here univariate, fractional and multivariate approximations. Iterated sequential multi-layer approximations are also studied. The functions under approximation and neural networks are Banach space valued.
This book includes constructive approximation theory; it presents ordinary and fractional approximations by positive sublinear operators, and high order approximation by multivariate generalized Picard, Gauss–Weierstrass, Poisson–Cauchy and trigonometric singular integrals. Constructive and Computational Fractional Analysis recently is more and more in the center of mathematics because of their great applications in the real world. In this book, all presented is original work by the author given at a very general level to cover a maximum number of cases in various applications. The author applies generalized fractional differentiation techniques of Riemann–Liouville, Caputo and Canavati types and of fractional variable order to various kinds of inequalities such as of Opial, Hardy, Hilbert–Pachpatte and on the spherical shell. He continues with E. R. Love left- and right-side fractional integral inequalities. They follow fractional Landau inequalities, of left and right sides, univariate and multivariate, including ones for Semigroups. These are developed to all possible directions, and right-side multivariate fractional Taylor formulae are proven for the purpose. It continues with several Gronwall fractional inequalities of variable order. This book results are expected to find applications in many areas of pure and applied mathematics. As such this book is suitable for researchers, graduate students and seminars of the above disciplines, also to be in all science and engineering libraries.
Knowledge can be modeled and computed using computational mathematical methods, then lead to real world conclusions. The strongly related to that Computational Analysis is a very large area with lots of applications. This monograph includes a great variety of topics of Computational Analysis. We present: probabilistic wavelet approximations, constrained abstract approximation theory, shape preserving weighted approximation, non positive approximations to definite integrals, discrete best approximation, approximation theory of general Picard singular operators including global smoothness preservation property, fractional singular operators. We also deal with non-isotropic general Picard singular multivariate operators and q-Gauss-Weierstrass singular q-integral operators. We talk about quantitative approximations by shift-invariant univariate and multivariate integral operators, nonlinear neural networks approximation, convergence with rates of positive linear operators, quantitative approximation by bounded linear operators, univariate and multivariate quantitative approximation by stochastic positive linear operators on univariate and multivariate stochastic processes. We further present right fractional calculus and give quantitative fractional Korovkin theory of positive linear operators. We also give analytical inequalities, fractional Opial inequalities, fractional identities and inequalities regarding fractional integrals. We further deal with semi group operator approximation, simultaneous Feller probabilistic approximation. We also present Fuzzy singular operator approximations. We give transfers from real to fuzzy approximation and talk about fuzzy wavelet and fuzzy neural networks approximations, fuzzy fractional calculus and fuzzy Ostrowski inequality. We talk about discrete fractional calculus, nabla discrete fractional calculus and inequalities. We study the q-inequalities, and q-fractional inequalities. We further study time scales: delta and nabla approaches, duality principle and inequalities. We introduce delta and nabla time scales fractional calculus and inequalities. We finally study convergence with rates of approximate solutions to exact solution of multivariate Dirichlet problem and multivariate heat equation, and discuss the uniqueness of solution of general evolution partial differential equation \ in multivariate time. The exposed results are expected to find applications to: applied and computational mathematics, stochastics, engineering, artificial intelligence, vision, complexity and machine learning. This monograph is suitable for graduate students and researchers.
This special volume is a collection of outstanding more applied articles presented in AMAT 2015 held in Ankara, May 28-31, 2015, at TOBB Economics and Technology University. The collection is suitable for Applied and Computational Mathematics and Engineering practitioners, also for related graduate students and researchers. Furthermore it will be a useful resource for all science and engineering libraries. This book includes 29 self-contained and well-edited chapters that can be among others useful for seminars in applied and computational mathematics, as well as in engineering.
In this monograph the authors present Newton-type, Newton-like and other numerical methods, which involve fractional derivatives and fractional integral operators, for the first time studied in the literature. All for the purpose to solve numerically equations whose associated functions can be also non-differentiable in the ordinary sense. That is among others extending the classical Newton method theory which requires usual differentiability of function. Chapters are self-contained and can be read independently and several advanced courses can be taught out of this book. An extensive list of references is given per chapter. The book’s results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also to be in all science and engineering libraries.