Download Free Integrated Decision Support System For Flexible Manufacturing System Design Book in PDF and EPUB Free Download. You can read online Integrated Decision Support System For Flexible Manufacturing System Design and write the review.

Design and Analysis of Integrated Manufacturing Systems is a fresh look at manufacturing from a systems point of view. This collection of papers from a symposium sponsored by the National Academy of Engineering explores the need for new technologies, the more effective use of new tools of analysis, and the improved integration of all elements of manufacturing operations, including machines, information, and humans. It is one of the few volumes to include detailed proposals for research that match the needs of industry.
Presents a framework of worldwide problems, issues and solutions relevant to the design of work and development of personnel in advanced manufacturing systems. Focuses on people and their central roles in automated production resulting from rapid computer-based integration. Addresses social, technical, organizational, managerial and ecological design issues relating to manufacturing success and the business objectives of a firm. Provides solutions to problems of integrating the human element into the production process.
The book develops manufacturing concepts and applications beyond physical production and towards a wider manufacturing value chain incorporating external stakeholders that include suppliers of raw materials and parts, customers, collaborating manufacturing companies, manufacturing service providers, and environmental organisations. The focal point of the value chain remains as a manufacturing system and its operations whiles flows of parts/materials and information and services across the supply/value chain tiers are taken into account. The book emphasises on the two innovative paradigms of Reconfigurable Manufacturing Systems (RMS) and the 4th industrial revolution (Industry 4.0) along with their incorporated development. RMS, as a relatively new paradigm, has been introduced to meet the requirements of ‘the factories of the future’, which is aimed by Industry 4.0, though introducing greater responsiveness and customised flexibility into production systems, in which changes in product volumes and types occur regularly. Manufacturing responsiveness can be achieved by RMS through reconfiguring the production facilities according to changing demands of products and new market conditions. The book addresses challenges of mass-customisation and dynamic changes in the supply-chain environment by focusing on developing new techniques related to integrability, scalability and re-configurability at a system level and manufacturing readiness in terms of financial and technical feasibility of RMS. It demonstrate the expected impacts of an RMS design on operational performance and its supply/value chain in the current/future manufacturing environment facing dynamic changes in the internal/external circumstances. In order to establish a circular economy through the RMS value chain, an integrated data-based reconfiguration link is introduced to incorporate information sharing amongst the value chain stakeholders and facilitate grouping products into families with allocation of the product families to the corresponding system configurations with optimal product-process allocation. Decision support systems such as multi criteria decision making tools are developed and applied for the selection of product families and optimising product-process configuration. The proposed models are illustrated through real case studies in applicable manufacturing firms.
This book has been written for all those interested in flexible manufacturing systems (FMS) and other forms of computerized manufacturing systems (CMS). It deals with many aspects of the design, operation, and simulation of FMS and explains the origins of FMS.
During the last two decades, a tremendous growth in the popularity and applications of computers in manufacturing has occurred. Computer aided design, computer-aided manufacturing, flexible manufacturing systems, group technology and many others are considered by many manufacturing executives as the most promising technologies and philosophies that, if successfully implemented, can reduce costs and enable the US manufacturing companies to become more competitive in the global market. In the computer-integrated manufacturing environ ment, the decision processes are often more involved. The decision makers are frequently required to have access to a vast amount of data to support and analyze their complex decision problems at strategic and tactical levels. Decision support systems are often referred to as computer-based information technologies that allow the decision makers to interactively communicate and solve the decision problems. Manufacturing Decision Support Systems is intended to report the latest developments and address the central issues in this area. This volume consists of 14 refereed chapters, written by leading researchers from academia and industry.
In the last decade, the production of mechanical components to be assembled in final products produced in high volumes (e.g. cars, mopeds, industrial vehicles, etc.) has undergone deep changes due to the overall modifications in the way companies compete. Companies must consider competitive factors such as short lead times, tight product tolerances, frequent market changes and cost reduction. Anyway, companies often have to define production objectives as trade-offs among these critical factors since it can be difficult to improve all of them. Even if system flexibility is often considered a fundamental requirement for firms, it is not always a desirable characteristic of a system because it requires relevant investment cost which can jeopardize the profitability of the firm. Dedicated systems are not able to adapt to changes of the product characteristics while flexible systems offer more flexibility than what is needed, thus increasing investment and operative costs. Production contexts characterized by mid to high demand volume of well identified families of products in continuous evolution do not require the highest level of flexibility; therefore, manufacturing system flexibility must be rationalized and it is necessary to find out the best trade-off between productivity and flexibility by designing manufacturing systems endowed with the right level of flexibility required by the production problem. This new class of production systems can be named Focused Flexibility Manufacturing Systems-FFMSs. The flexibility degree in FFMSs is related to their ability to cope with volume, mix and technological changes, and it must take into account both present and future changes. The required level of system flexibility impacts on the architecture of the system and the explicit design of flexibility often leads to hybrid systems, i.e. automated integrated systems in which parts can be processed by both general purpose and dedicated machines. This is a key issue of FFMSs and results from the matching of flexibility and productivity that respectively characterize FMSs and Dedicated Manufacturing Systems (DMSs). The market share of the EU in the machine tool sector is 44%; the introduction of focused flexibility would be particularly important for machine tool builders whose competitive advantage is based on the ability of customizing their systems on the basis of needs of their customers. In fact, even if current production contexts frequently present situations which would fit well with the FFMS approach, tradition and know-how of machine tool builders play a crucial role. Firms often agree with the focused flexibility vision, nevertheless they decide not to pay the risk and efforts related to the design of this new system architecture. This is due also to the lack of well-structured design approaches which can help machine tool builders to configure innovative systems. Therefore, the FFMS topic is studied through the book chapters following a shared mission: "To define methodologies and tools to design production systems with a minimum level of flexibility needed to face, during their lifecycle, the product and process evolution both in the technological and demand aspects. The goal is to find out the optimal trade-off between flexibility and productivity". The book framework follows the architecture which has been developed to address the FFMS Design problem. This architecture is both broad and detailed, since it pays attention to all the relevant levels in a firm hierarchy which are involved in the system design. Moreover, the architecture is innovative because it models both the point of view of the machine tool builder and the point of view of the system user. The architecture starts analyzing Manufacturing Strategy issues and generating the possible demand scenario to be faced. Technological aspects play a key role while solving process plan problems for the products in the part family. Strategic and technological data becomes input when a machine tool builder performs system configuration. The resulting system configurations are possible solutions that a system user considers when planning its system capacity. All the steps of the architecture are deeply studied, developing methods and tools to address each subproblem. Particular attention is paid to the methodologies adopted to face the different subproblems: mathematical programming, stochastic programming, simulation techniques and inverse kinematics have been used. The whole architecture provides a general approach to implement the right degree of flexibility and it allows to study how different aspects and decisions taken in a firm impact on each other. The work presented in the book is innovative because it gives links among different research fields, such as Manufacturing Strategy, Process Plan, System Design, Capacity Planning and Performance Evaluation; moreover, it helps to formalize and rationalize a critical area such as manufacturing system flexibility. The addressed problem is relevant at an academic level but, also, at an industrial level. A great deal of industrial sectors need to address the problem of designing systems with the right degree of flexibility; for instance, automotive, white goods, electrical and electronic goods industries, etc. Attention to industrial issues is confirmed by empirical studies and real case analyses which are presented within the book chapters.
Now, this comprehensive and systematic overview of both the design models and quantitative solution methods for FMS support, configuration, and operation rectifies that problem. Students, production managers/planners, and FMS installation planners can now find everything they need in one authoritative and up-to-date source.
This book presents a framework and specific methods and tools for the selection and configuration of the capacity of Advanced Manufacturing Systems (AMS). AMS include Flexible Manufacturing Systems, Dedicated Manufacturing Systems, and Reconfigurable Manufacturing Systems. Starting from the characteristic of the competitive environment, the directions given by the company strategy, data regarding the products, and information regarding the different system architectures, the decision support system described here aids the decision maker by means of a formalized methodology that follows the various steps required to define the type and timing of 'capacity' acquisition and to define the detailed configuration of AMS along its life cycle. The decision making framework and tools illustrated in this volume combine decision-making theory, optimization theory, discrete event simulation and queuing networks. It will be of interest to graduate students and researchers involved in manufacturing engineering, industrial engineering and operations research.
Industrieroboter gehoren heute zum Alltag. In den letzten zehn Jahren verlagerte sich der Schwerpunkt der Neuentwicklungen weg von den Robotern selbst, hin zu alternativen Formen der kunstlichen Intelligenz, mit denen die Gerate ausgestattet werden. Dem Rechnung tragend, beschaftigt sich die zweite Auflage dieses Handbuchs vor allem mit Anwendungen und Strategien zur Problemlosung in der Industrie. Angesprochen werden Themen wie Graphiksimulatoren, objektorientierte Software, Kommunikationssysteme und Mikro- und Nanoroboter. (04/99)