Download Free Integral Domains Inside Noetherian Power Series Rings Constructions And Examples Book in PDF and EPUB Free Download. You can read online Integral Domains Inside Noetherian Power Series Rings Constructions And Examples and write the review.

Power series provide a technique for constructing examples of commutative rings. In this book, the authors describe this technique and use it to analyse properties of commutative rings and their spectra. This book presents results obtained using this approach. The authors put these results in perspective; often the proofs of properties of classical examples are simplified. The book will serve as a helpful resource for researchers working in commutative algebra.
Featuring presentations from the Fourth International Conference on Commutative Algebra held in Fez, Morocco, this reference presents trends in the growing area of commutative algebra. With contributions from nearly 50 internationally renowned researchers, the book emphasizes innovative applications and connections to algebraic number theory, geome
Rings, Modules, Algebras, and Abelian Groups summarizes the proceedings of a recent algebraic conference held at Venice International University in Italy. Surveying the most influential developments in the field, this reference reviews the latest research on Abelian groups, algebras and their representations, module and ring theory, and topological
This monograph provides an exhaustive treatment of several classes of Noetherian rings and morphisms of Noetherian local rings. Chapters carefully examine some of the most important topics in the area, including Nagata, F-finite and excellent rings, Bertini’s Theorem, and Cohen factorizations. Of particular interest is the presentation of Popescu’s Theorem on Neron Desingularization and the structure of regular morphisms, with a complete proof. Classes of Good Noetherian Rings will be an invaluable resource for researchers in commutative algebra, algebraic and arithmetic geometry, and number theory.
This volume contains the combined Proceedings of the Second International Meeting on Commutative Algebra and Related Areas (SIMCARA) held from July 22–26, 2019, at the Universidade de São Paulo, São Carlos, Brazil, and the AMS Special Session on Commutative Algebra, held from September 14–15, 2019, at the University of Wisconsin-Madison, Wisconsin. These two meetings celebrated the combined 150th birthday of Roger and Sylvia Wiegand. The Wiegands have been a fixture in the commutative algebra community, as well as the wider mathematical community, for over 40 years. Articles in this volume cover various areas of factorization theory, homological algebra, ideal theory, representation theory, homological rigidity, maximal Cohen-Macaulay modules, and the behavior of prime spectra under completion, as well as some topics in related fields. The volume itself bears evidence that the area of commutative algebra is a vibrant one and highlights the influence of the Wiegands on generations of researchers. It will be useful to researchers and graduate students.
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Includes current work of 38 renowned contributors that details the diversity of thought in the fields of commutative algebra and multiplicative ideal theory. Summarizes recent findings on classes of going-down domains and the going-down property, emphasizing new characterizations and applications, as well as generalizations for commutative rings wi
Commutative Ring Theory emerged as a distinct field of research in math ematics only at the beginning of the twentieth century. It is rooted in nine teenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researchers in Non-Noetherian Commutative Ring Theory to write expository articles representing the most recent topics of research in this area.
Features a stimulating selection of papers on abelian groups, commutative and noncommutative rings and their modules, and topological groups. Investigates currently popular topics such as Butler groups and almost completely decomposable groups.
This volume is the proceedings of the Conference on Algebra and Algebraic Geometry with Applications which was held July 19 – 26, 2000, at Purdue University to honor Professor Shreeram S. Abhyankar on the occasion of his seventieth birthday. Eighty-five of Professor Abhyankar's students, collaborators, and colleagues were invited participants. Sixty participants presented papers related to Professor Abhyankar's broad areas of mathematical interest. There were sessions on algebraic geometry, singularities, group theory, Galois theory, combinatorics, Drinfield modules, affine geometry, and the Jacobian problem. This volume offers an outstanding collection of papers by authors who are among the experts in their areas.