Download Free Integrable Systems Quantum Groups And Quantum Field Theories Book in PDF and EPUB Free Download. You can read online Integrable Systems Quantum Groups And Quantum Field Theories and write the review.

In many ways the last decade has witnessed a surge of interest in the interplay between theoretical physics and some traditional areas of pure mathematics. This book contains the lectures delivered at the NATO-ASI Summer School on `Recent Problems in Mathematical Physics' held at Salamanca, Spain (1992), offering a pedagogical and updated approach to some of the problems that have been at the heart of these events. Among them, we should mention the new mathematical structures related to integrability and quantum field theories, such as quantum groups, conformal field theories, integrable statistical models, and topological quantum field theories, that are discussed at length by some of the leading experts on the areas in several of the lectures contained in the book. Apart from these, traditional and new problems in quantum gravity are reviewed. Other contributions to the School included in the book range from symmetries in partial differential equations to geometrical phases in quantum physics. The book is addressed to researchers in the fields covered, PhD students and any scientist interested in obtaining an updated view of the subjects.
The aim of this CIME Session was to review the state of the art in the recent development of the theory of integrable systems and their relations with quantum groups. The purpose was to gather geometers and mathematical physicists to allow a broader and more complete view of these attractive and rapidly developing fields. The papers contained in this volume have at the same time the character of survey articles and of research papers, since they contain both a survey of current problems and a number of original contributions to the subject.
A 1996 introduction to integrability and conformal field theory in two dimensions using quantum groups.
The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.
Since the first ICM was held in Zürich in 1897, it has become the pinnacle of mathematical gatherings. It aims at giving an overview of the current state of different branches of mathematics and its applications as well as an insight into the treatment of special problems of exceptional importance. The proceedings of the ICMs have provided a rich chronology of mathematical development in all its branches and a unique documentation of contemporary research. They form an indispensable part of every mathematical library. The Proceedings of the International Congress of Mathematicians 1994, held in Zürich from August 3rd to 11th, 1994, are published in two volumes. Volume I contains an account of the organization of the Congress, the list of ordinary members, the reports on the work of the Fields Medalists and the Nevanlinna Prize Winner, the plenary one-hour addresses, and the invited addresses presented at Section Meetings 1 - 6. Volume II contains the invited address for Section Meetings 7 - 19. A complete author index is included in both volumes. '...the content of these impressive two volumes sheds a certain light on the present state of mathematical sciences and anybody doing research in mathematics should look carefully at these Proceedings. For young people beginning research, this is even more important, so these are a must for any serious mathematics library. The graphical presentation is, as always with Birkhäuser, excellent....' (Revue Roumaine de Mathematiques pures et Appliquées)
Proceedings of a NATO ARW held in Como, Italy, September 14-19, 1992
Integrable Sys Quantum Field Theory
This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.
This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.
This is a collection of Prof L D Faddeev's important lectures, papers and talks. Some of these have not been published before and some have, for the first time, been translated from Russian into English. The topics covered correspond to several distinctive and pioneering contributions of Prof Faddeev to modern mathematical physics: quantization of YangߝMills and Einstein gravitational fields, soliton theory, the many-dimensional inverse problem in potential scattering, the Hamiltonian approach to anomalies, and the theory of quantum integrable models. There are also two papers on more general aspects of the interrelations between physics and mathematics as well as an autobiographical essay.