Download Free Integers Fractions And Arithmetic Book in PDF and EPUB Free Download. You can read online Integers Fractions And Arithmetic and write the review.

A co-publication of the AMS and the Mathematical Sciences Research Institute. This book, which consists of twelve interactive seminars, is a comprehensive and careful study of the fundamental topics of K–8 arithmetic. The guide aims to help teachers understand the mathematical foundations of number theory in order to strengthen and enrich their mathematics classes. Five seminars are dedicated to fractions and decimals because of their importance in the classroom curriculum. The standard topics are covered in detail, but are arranged in an order that is slightly different from the usual one. Multiplication is treated first, and with that in hand, common denominators and equivalent fractions are more readily understood and are available for use when discussing addition. The book is intended for the professional development of teachers. It is appropriate for teacher education programs as well as for enrichment programs such as Mathematical Circles for Teachers. There are numerous activities in each seminar that teachers can bring into their classrooms. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.--Publisher website.
"This resource was created in response to the requests of teachers--those who want to implement number talks but are unsure of how to begin, and those with experience who want more guidance in crafting purposeful problems."--Page 4 de la couverture.
Illustrated workbook for learning, practicing, and mastering elementary number theory in mathematics.
Mathematics is beautiful--and it can be fun and exciting as well as practical. Good Math is your guide to some of the most intriguing topics from two thousand years of mathematics: from Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group symmetry, and mechanical computation. If you've ever wondered what lay beyond the proofs you struggled to complete in high school geometry, or what limits the capabilities of computer on your desk, this is the book for you. Why do Roman numerals persist? How do we know that some infinities are larger than others? And how can we know for certain a program will ever finish? In this fast-paced tour of modern and not-so-modern math, computer scientist Mark Chu-Carroll explores some of the greatest breakthroughs and disappointments of more than two thousand years of mathematical thought. There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular "Good Math" blog, you'll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird. Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing. If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark's book will both entertain and enlighten you.
There is a nineteen-year recurrence in the apparent position of the sun and moon against the background of the stars, a pattern observed long ago by the Babylonians. In the course of those nineteen years the Earth experiences 235 lunar cycles. Suppose we calculate the ratio of Earth's period about the sun to the moon's period about Earth. That ratio has 235/19 as one of its early continued fraction convergents, which explains the apparent periodicity. Exploring Continued Fractions explains this and other recurrent phenomena—astronomical transits and conjunctions, lifecycles of cicadas, eclipses—by way of continued fraction expansions. The deeper purpose is to find patterns, solve puzzles, and discover some appealing number theory. The reader will explore several algorithms for computing continued fractions, including some new to the literature. He or she will also explore the surprisingly large portion of number theory connected to continued fractions: Pythagorean triples, Diophantine equations, the Stern-Brocot tree, and a number of combinatorial sequences. The book features a pleasantly discursive style with excursions into music (The Well-Tempered Clavier), history (the Ishango bone and Plimpton 322), classics (the shape of More's Utopia) and whimsy (dropping a black hole on Earth's surface). Andy Simoson has won both the Chauvenet Prize and Pólya Award for expository writing from the MAA and his Voltaire's Riddle was a Choice magazine Outstanding Academic Title. This book is an enjoyable ramble through some beautiful mathematics. For most of the journey the only necessary prerequisites are a minimal familiarity with mathematical reasoning and a sense of fun.
This easy-to-read summary is an excellent tool for introducing others to the messages contained in Principles and Standards.
This is a textbook for pre-service elementary school teachers and for current teachers who are taking professional development courses. By emphasizing the precision of mathematics, the exposition achieves a logical and coherent account of school mathematics at the appropriate level for the readership. Wu provides a comprehensive treatment of all the standard topics about numbers in the school mathematics curriculum: whole numbers, fractions, and rational numbers. Assuming no previous knowledge of mathematics, the presentation develops the basic facts about numbers from the beginning and thoroughly covers the subject matter for grades K through 7. Every single assertion is established in the context of elementary school mathematics in a manner that is completely consistent with the basic requirements of mathematics. While it is a textbook for pre-service elementary teachers, it is also a reference book that school teachers can refer to for explanations of well-known but hitherto unexplained facts. For example, the sometimes-puzzling concepts of percent, ratio, and rate are each given a treatment that is down to earth and devoid of mysticism. The fact that a negative times a negative is a positive is explained in a leisurely and comprehensible fashion.
The images in this book are in color. For a less-expensive grayscale paperback version, see ISBN 9781680923254. Prealgebra 2e is designed to meet scope and sequence requirements for a one-semester prealgebra course. The text introduces the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to demonstrate the cohesiveness and structure of mathematics. Students who are taking basic mathematics and prealgebra classes in college present a unique set of challenges. Many students in these classes have been unsuccessful in their prior math classes. They may think they know some math, but their core knowledge is full of holes. Furthermore, these students need to learn much more than the course content. They need to learn study skills, time management, and how to deal with math anxiety. Some students lack basic reading and arithmetic skills. The organization of Prealgebra makes it easy to adapt the book to suit a variety of course syllabi.
Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.