Download Free Insight Into Plant Spatial Omics Mass Spectrometry Imaging Book in PDF and EPUB Free Download. You can read online Insight Into Plant Spatial Omics Mass Spectrometry Imaging and write the review.

This book gathers knowledge about matrix-assisted laser desorption ionisation (MALDI) mass spectrometry imaging for postgraduate and professional researchers in academia and in industry where it has direct application to clinical research.
This book presents a timely review of the latest advances in rhizosphere biology, which have been facilitated by the application of omics tools. It includes chapters on the use of various omics tools in rhizosphere biology, focusing on understanding plant and soil microbe interactions. The role of proteomics and metagenomics in research on symbiotic association is also discussed in detail. The book also includes chapters on the use of omics tools for the isolation of functional biomolecules from rhizospheric microorganisms. The book’s respective sections describe and provide detailed information on important omics tools, such as genomics, transcriptomics, proteomics, metabolomics and meta-epigenomics. In turn, the book promotes and describes the combined use of plant biology, microbial ecology, and soil sciences to design new research strategies and innovative methods in soil biology. Lastly, it highlights the considerable potential of the rhizosphere in terms of crop productivity, bioremediation, ecological engineering, plant nutrition and health, as well as plant adaptation to stress conditions. This book offers both a practical guide and reference source for all scientists working in soil biology, plant pathology, etc. It will also benefit students studying soil microbiology, and researchers studying rhizosphere structure.
Metabolomics – which deals with all metabolites of an organism – is a rapidly-emerging sector of post-genome research fields. It plays significant roles in a variety of fields from medicine to agriculture and holds a fundamental position in functional genomics studies and their application in plant biotechnology. This volume comprehensively covers plant metabolomics for the first time. The chapters offer cutting-edge information on analytical technology, bioinformatics and applications. They were all written by leading researchers who have been directly involved in plant metabolomics research throughout the world. Up-to-date information and future developments are described, thereby producing a volume which is a landmark of plant metabolomics research and a beneficial guideline to graduate students and researchers in academia, industry, and technology transfer organizations in all plant science fields.
Due to the complexity and interconnectivity of many biological processes, an integrative systems biology approach is required to better understand them. The integration of various omics data (including genomics, proteomics, transcriptomics, and metabolomics data) will provide a holistic view that highlights the relationship among the various biomolecules and their functions in plant growth, resistance, quality, and many other important traits. Recent advances in analytical power and in the ability to process large data sets has enabled researchers to integrate multi-omics data and have a much deeper knowledge of the cell, tissue, organ, or even an entire organism being studied. The goal of this Research Topic is not only to publish high-quality and reliable omics data but also to answer the bigger question of how to integrate and correlate different data sets from multiple omics studies. Can one omics data set be used as a primary data set for the design and execution of another omics study? If so, then how it can be done? What are its pre-requisites? How can we plan research involving multi-omics approach to reach a meaningful conclusion? These are the questions that need our attention and their answers are critical for the future of omics-based research. For this Research Topic, we welcome contributors to submit manuscripts related to the following themes: • Studies on plant-based genomics, transcriptomics, proteomics, and metabolomics; • Development of new analytical methods for omics utilizing in plants; • Advancements in the current analytical methods for utilizing omics in plants; • Integration of multi-omics data sets; • Development of new statistical methods for data analysis.
This book provides the most comprehensive and up-to-date review of research on vegetable plants associated with root-galls disease caused by root-knot nematodes (RKNs), Meloidogyne spp. Vegetables retain a key position in cultural cuisines and their consumption worldwide due to rich sources of micronutrients, including vitamins, minerals and antioxidants, but root galls disease of these crops caused by RKNs steals both quantity and quality from production. The field of plant nematology has experienced exponential growth over the past decade, and these RKNs are now known as widely damaging obligate plant parasites of vegetable plants. Advances are being made in understanding their biology, parasitism in the root system, giant cell development, root gall formation, chemical signalling, root-knot disease complexes, and management systems. This compilation provides an invaluable resource for studying root-galls disease of vegetable plants to those readers associated with plant nematology, plant pathology, plant protection, and agricultural science, including researchers, teachers, advanced undergraduates and graduate students, and even agricultural extension agents and farmers.
A comparative, holistic synthesis of microbiome research, spanning soil, plant, animal and human hosts.
Plant polyphenols are secondary metabolites that constitute one of the most common and widespread groups of natural products. They are crucial constituents of a large and diverse range of biological functions and processes, and provide many benefits to both plants and humans. Many polyphenols, from their structurally simplest representatives to their oligo/polymeric versions, are notably known as phytoestrogens, plant pigments, potent antioxidants, and protein interacting agents. This sixth volume of the highly regarded Recent Advances in Polyphenol Research series is edited by Heidi Halbwirth, Karl Stich, Véronique Cheynier and Stéphane Quideau, and is a continuance of the series’ tradition of compiling a cornucopia of cutting-edge chapters, written by some of the leading experts in their respective fields of polyphenol sciences. Highlighted herein are some of the most recent and pertinent developments in polyphenol research, covering such major areas as: Chemistry and physicochemistry Biosynthesis, genetics & metabolic engineering Roles in plants and ecosystems Food, nutrition & health Applied polyphenols This book is a distillation of the most current information, and as such, will surely prove an invaluable source for chemists, biochemists, plant scientists, pharmacognosists and pharmacologists, biologists, ecologists, food scientists and nutritionists.
Concepts and Techniques in OMICS and Systems Biology provides a concise and lucid account on the technical aspects of omics, system biology and their application in fields of different life science. With a strong focus on the fundamental principles understanding of metabolomics, ionomics and system biology, the book also gives an updated account on technical aspects of omics and system biology. Since both omics and systems biology fields are fast advancing filed of biological sciences, its significance and applications need to be understood from the baseline. In 10 chapters Concepts and Techniques in OMICS and Systems Biology introduces the reader to both Proteomics, Metabolomics and Ionomics, and System Biology, the technical applications, describes both the software in for proteomics as metabolomic enumeration and preludes Omics technologies and their applications. The chapters are designed in a well-defined chronology such that readers will understand the concepts and techniques involved in omics and system biology. This compilation will be ideal reading material for students, researchers and people working in the industries related to biological sciences. Provides an in-depth explanation of fundamental principles regarding the understanding of metabolomics, ionomics and system biology. Gives updated account on technical aspects of omics and system biology. Includes unique content in its theoretical background, technical approaches and advancements made in omics and systems biology