Download Free Inorganic Chemistry In Biology Book in PDF and EPUB Free Download. You can read online Inorganic Chemistry In Biology and write the review.

The importance of metals in biology, the environment and medicine has become increasingly evident over the last twenty five years. The study of the multiple roles of metal ions in biological systems, the rapidly expanding interface between inorganic chemistry and biology constitutes the subject called Biological Inorganic Chemistry. The present text, written by a biochemist, with a long career experience in the field (particularly iron and copper) presents an introduction to this exciting and dynamic field. The book begins with introductory chapters, which together constitute an overview of the concepts, both chemical and biological, which are required to equip the reader for the detailed analysis which follows. Pathways of metal assimilation, storage and transport, as well as metal homeostasis are dealt with next. Thereafter, individual chapters discuss the roles of sodium and potassium, magnesium, calcium, zinc, iron, copper, nickel and cobalt, manganese, and finally molybdenum, vanadium, tungsten and chromium. The final three chapters provide a tantalising view of the roles of metals in brain function, biomineralization and a brief illustration of their importance in both medicine and the environment. Relaxed and agreeable writing style. The reader will not only fiind the book easy to read, the fascinating anecdotes and footnotes will give him pegs to hang important ideas on.Written by a biochemist. Will enable the reader to more readily grasp the biological and clinical relevance of the subject.Many colour illustrations. Enables easier visualization of molecular mechanismsWritten by a single author. Ensures homgeneity of style and effective cross referencing between chapters
Part A.: Overviews of biological inorganic chemistry : 1. Bioinorganic chemistry and the biogeochemical cycles -- 2. Metal ions and proteins: binding, stability, and folding -- 3. Special cofactors and metal clusters -- 4. Transport and storage of metal ions in biology -- 5. Biominerals and biomineralization -- 6. Metals in medicine. -- Part B.: Metal ion containing biological systems : 1. Metal ion transport and storage -- 2. Hydrolytic chemistry -- 3. Electron transfer, respiration, and photosynthesis -- 4. Oxygen metabolism -- 5. Hydrogen, carbon, and sulfur metabolism -- 6. Metalloenzymes with radical intermediates -- 7. Metal ion receptors and signaling. -- Cell biology, biochemistry, and evolution: Tutorial I. -- Fundamentals of coordination chemistry: Tutorial II.
Practical Approaches to Biological Inorganic Chemistry, Second Edition, reviews the use of spectroscopic and related analytical techniques to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique, including relevant theory, a clear explanation of what it is, how it works, and how the technique is actually used to evaluate biological structures. New chapters cover Raman Spectroscopy and Molecular Magnetochemistry, but all chapters have been updated to reflect the latest developments in discussed techniques. Practical examples, problems and many color figures are also included to illustrate key concepts. The book is designed for researchers and students who want to learn both the basics and more advanced aspects of key methods in biological inorganic chemistry. Presents new chapters on Raman Spectroscopy and Molecular Magnetochemistry, as well as updated figures and content throughout Includes color images throughout to enable easier visualization of molecular mechanisms and structures Provides worked examples and problems to help illustrate and test the reader’s understanding of each technique Written by leading experts who use and teach the most important techniques used today to analyze complex biological structures
Understanding, identifying and influencing the biological systems are the primary objectives of chemical biology. From this perspective, metal complexes have always been of great assistance to chemical biologists, for example, in structural identification and purification of essential biomolecules, for visualizing cellular organelles or to inhibit specific enzymes. This inorganic side of chemical biology, which continues to receive considerable attention, is referred to as inorganic chemical biology. Inorganic Chemical Biology: Principles, Techniques and Applications provides a comprehensive overview of the current and emerging role of metal complexes in chemical biology. Throughout all of the chapters there is a strong emphasis on fundamental theoretical chemistry and experiments that have been carried out in living cells or organisms. Outlooks for the future applications of metal complexes in chemical biology are also discussed. Topics covered include: • Metal complexes as tools for structural biology • IMAC, AAS, XRF and MS as detection techniques for metals in chemical biology • Cell and organism imaging and probing DNA using metal and metal carbonyl complexes • Detection of metal ions, anions and small molecules using metal complexes • Photo-release of metal ions in living cells • Metal complexes as enzyme inhibitors and catalysts in living cells Written by a team of international experts, Inorganic Chemical Biology: Principles, Techniques and Applications is a must-have for bioinorganic, bioorganometallic and medicinal chemists as well as chemical biologists working in both academia and industry.
Biological Inorganic Chemistry: A New Introduction to Molecular Structure and Function, Third Edition, provides a comprehensive discussion of the biochemical aspects of metals in living systems. The fascinating world of the role of metals in biology, medicine and the environment has progressed significantly since the very successful Second Edition of the book published in 2012. Beginning with an overview of metals and selected nonmetals in biology, the book supports the interdisciplinary nature of this vibrant area of research by providing an introduction to basic coordination chemistry for biologists and structural and molecular biology for chemists. Having built this accessible foundation, the book progresses to discuss biological ligands for metal ions, intermediary metabolism and bioenergetics, and methods to study metals in biological systems. The book also covers metal assimilation pathways; transport, storage, and homeostasis of metal ions; sodium and potassium channels and pumps; magnesium phosphate metabolism and photoreceptors; calcium and cellular signaling; the catalytic role of several classes of mononuclear zinc enzymes; the biological chemistry of iron; and copper chemistry and biochemistry. In addition, the book discusses nickel and cobalt enzymes; manganese chemistry and biochemistry; molybdenum, tungsten, vanadium, and chromium; non-metals in biology; biomineralization; metals in the brain; metals and neurodegeneration; metals in medicine and metals as drugs; and metals in the environment. Now in its Third Edition, this popular and award-winning resource highlights recent exciting advances and provides a thorough introduction for both researchers approaching the field from a variety of backgrounds, as well as advanced students. Winner of a 2019 Textbook Excellence Award (Texty) from the Textbook and Academic Authors Association Includes a thorough survey of metals in biological systems: in the human body, in medicine and in the environment Previous winner (Second Edition) of the 2013 Textbook Excellence Award (Texty) from the Text and Academic Authors Association Features new sections: an overview of the different functions of essential metal ions; toxic metals in diagnosis and therapeutics; crystal and ligand field theory and their limitations; molecular orbital theory; genetic and molecular biological approaches to study metals; more complex cofactors and their biosynthesis; photosynthetic oxidation of water; man-made environmental pollution; and metals as poisons
Das erfolgreiche Werk des jungen, kreativen Autors jetzt in aktualisierter und korrigierter Auflage! Der Text wurde um Fragenkomplexe und Übungsbeispiele, teils mit Lösungen, erweitert; dies empfiehlt ihn besonders zur Ergänzung einer Vorlesung.
Modern Inorganic Synthetic Chemistry, Second Edition captures, in five distinct sections, the latest advancements in inorganic synthetic chemistry, providing materials chemists, chemical engineers, and materials scientists with a valuable reference source to help them advance their research efforts and achieve breakthroughs. Section one includes six chapters centering on synthetic chemistry under specific conditions, such as high-temperature, low-temperature and cryogenic, hydrothermal and solvothermal, high-pressure, photochemical and fusion conditions. Section two focuses on the synthesis and related chemistry problems of highly distinct categories of inorganic compounds, including superheavy elements, coordination compounds and coordination polymers, cluster compounds, organometallic compounds, inorganic polymers, and nonstoichiometric compounds. Section three elaborates on the synthetic chemistry of five important classes of inorganic functional materials, namely, ordered porous materials, carbon materials, advanced ceramic materials, host-guest materials, and hierarchically structured materials. Section four consists of four chapters where the synthesis of functional inorganic aggregates is discussed, giving special attention to the growth of single crystals, assembly of nanomaterials, and preparation of amorphous materials and membranes. The new edition’s biggest highlight is Section five where the frontier in inorganic synthetic chemistry is reviewed by focusing on biomimetic synthesis and rationally designed synthesis. Focuses on the chemistry of inorganic synthesis, assembly, and organization of wide-ranging inorganic systems Covers all major methodologies of inorganic synthesis Provides state-of-the-art synthetic methods Includes real examples in the organization of complex inorganic functional materials Contains more than 4000 references that are all highly reflective of the latest advancement in inorganic synthetic chemistry Presents a comprehensive coverage of the key issues involved in modern inorganic synthetic chemistry as written by experts in the field
Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells provides a complete overview of this important research area that is perfect for both newcomers and expert researchers in the field. Through concise chapters written and edited by esteemed experts, this book brings together a comprehensive treatment of the area previously only available through scattered, lengthy review articles in the literature. Advanced topics of research are covered, with particular focus on recent advances in the biological applications of transition metal complexes, including inorganic medicine, enzyme inhibitors, antiparasital agents, and biological imaging reagents. Geared toward researchers and students who seek an introductory overview of the field, as well as researchers working in advanced areas Focuses on the interactions of inorganic and organometallic transition metal complexes with biological molecules and live cells Foscuses on the fundamentals and their potential therapeutic and diagnostic applications Covers recent biological applications of transition metal complexes, such as anticancer drugs, enzyme inhibitors, bioconjugation agents, chemical biology tools, and bioimaging reagents
Determining the structure of molecules is a fundamental skill that all chemists must learn. Structural Methods in Molecular Inorganic Chemistry is designed to help readers interpret experimental data, understand the material published in modern journals of inorganic chemistry, and make decisions about what techniques will be the most useful in solving particular structural problems. Following a general introduction to the tools and concepts in structural chemistry, the following topics are covered in detail: • computational chemistry • nuclear magnetic resonance spectroscopy • electron paramagnetic resonance spectroscopy • Mössbauer spectroscopy • rotational spectra and rotational structure • vibrational spectroscopy • electronic characterization techniques • diffraction methods • mass spectrometry The final chapter presents a series of case histories, illustrating how chemists have applied a broad range of structural techniques to interpret and understand chemical systems. Throughout the textbook a strong connection is made between theoretical topics and the real world of practicing chemists. Each chapter concludes with problems and discussion questions, and a supporting website contains additional advanced material. Structural Methods in Molecular Inorganic Chemistry is an extensive update and sequel to the successful textbook Structural Methods in Inorganic Chemistry by Ebsworth, Rankin and Cradock. It is essential reading for all advanced students of chemistry, and a handy reference source for the professional chemist.