Download Free Innovations In Machine And Deep Learning Book in PDF and EPUB Free Download. You can read online Innovations In Machine And Deep Learning and write the review.

This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.
CYBER SECURITY AND DIGITAL FORENSICS Cyber security is an incredibly important issue that is constantly changing, with new methods, processes, and technologies coming online all the time. Books like this are invaluable to professionals working in this area, to stay abreast of all of these changes. Current cyber threats are getting more complicated and advanced with the rapid evolution of adversarial techniques. Networked computing and portable electronic devices have broadened the role of digital forensics beyond traditional investigations into computer crime. The overall increase in the use of computers as a way of storing and retrieving high-security information requires appropriate security measures to protect the entire computing and communication scenario worldwide. Further, with the introduction of the internet and its underlying technology, facets of information security are becoming a primary concern to protect networks and cyber infrastructures from various threats. This groundbreaking new volume, written and edited by a wide range of professionals in this area, covers broad technical and socio-economic perspectives for the utilization of information and communication technologies and the development of practical solutions in cyber security and digital forensics. Not just for the professional working in the field, but also for the student or academic on the university level, this is a must-have for any library. Audience: Practitioners, consultants, engineers, academics, and other professionals working in the areas of cyber analysis, cyber security, homeland security, national defense, the protection of national critical infrastructures, cyber-crime, cyber vulnerabilities, cyber-attacks related to network systems, cyber threat reduction planning, and those who provide leadership in cyber security management both in public and private sectors
This cutting-edge volume focuses on how artificial intelligence can be used to give computers the ability to imitate human sight. With contributions from researchers in diverse countries, including Thailand, Spain, Japan, Turkey, Australia, and India, the book explains the essential modules that are necessary for comprehending artificial intelligence experiences to provide machines with the power of vision. The volume also presents innovative research developments, applications, and current trends in the field. The chapters cover such topics as visual quality improvement, Parkinson’s disease diagnosis, hypertensive retinopathy detection through retinal fundus, big image data processing, N-grams for image classification, medical brain images, chatbot applications, credit score improvisation, vision-based vehicle lane detection, damaged vehicle parts recognition, partial image encryption of medical images, and image synthesis. The chapter authors show different approaches to computer vision, image processing, and frameworks for machine learning to build automated and stable applications. Deep learning is included for making immersive application-based systems, pattern recognition, and biometric systems. The book also considers efficiency and comparison at various levels of using algorithms for real-time applications, processes, and analysis.
In recent years, significant progress has been made in achieving artificial intelligence (AI) with an impact on students, managers, scientists, health personnel, technical roles, investors, teachers, and leaders. This book presents numerous successful applications of AI in various contexts. The innovative implications covered fall under the general field of machine learning (ML), including deep learning, decision-making, forecasting, pattern recognition, information retrieval, and interpretable AI. Decision-makers and entrepreneurs will find numerous successful applications in health care, sustainability, risk management, human activity recognition, logistics, and Industry 4.0. This book is an essential resource for anyone interested in challenges, opportunities, and the latest developments and real-world applications of ML. Whether you are a student, researcher, practitioner, or simply curious about AI, this book provides valuable insights and inspiration for your work and learning.
Data science is an emerging field and innovations in it need to be explored for the success of society 5.0. This book not only focuses on the practical applications of data science to achieve computational excellence, but also digs deep into the issues and implications of intelligent systems. This book highlights innovations in data science to achieve computational excellence that can optimize performance of smart applications. The book focuses on methodologies, framework, design issues, tools, architectures, and technologies necessary to develop and understand data science and its emerging applications in the present era. Data Science and Innovations for Intelligent Systems: Computational Excellence and Society 5.0 is useful for the research community, start-up entrepreneurs, academicians, data-centered industries, and professeurs who are interested in exploring innovations in varied applications and the areas of data science.
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data