Download Free Inland Waterway Studies Book in PDF and EPUB Free Download. You can read online Inland Waterway Studies and write the review.

Inland waterways are a host for a mode of transport that is not as visible to the general public or as used as it once was. It is, however, generally perceived to be very important to our freight transport system today, although a closer look into the inland waterway transport system rebuts this perception and reveals the strengths and opportunities of this mode of transportation. This book gives the reader a thorough understanding of the current role of inland waterway transport as a freight transport system and its conditions. Drawing on case studies from across Europe, this text explores the economic, logistic, and technological and policy issues related to inland waterway transport and the challenges that changes in these areas present to this transport mode. It also explores the strategies for the inland waterway transport sector to secure and then enlarge its role in the future of freight transport. Inland Waterway Transport will be an invaluable source for students and researchers of transport studies. In addition, the book will be useful to policymakers and practitioners involved in its development. It may also appeal to wider readers with an interest in the fascinating business of inland waterway transport.
This report provides an overview of the ecosystem sustainability procedures currently used for inland waterways in the United States.
The People’s Republic of China (PRC) has the world’s longest inland waterway system. Despite the system’s potential and the government’s policies encouraging its development, inland waterway transport (IWT) has not been developed as much as other transport modes. This publication examines the constraints in developing IWT based on a study in the PRC’s Hunan province. Six major challenges threatening the viability of IWT and its integration into the whole logistics chain have been identified. The analyses and case study lead to recommendations that are relevant not just to the PRC but also to other developing countries.
Bio-optical Modeling and Remote Sensing of Inland Waters presents the latest developments, state-of-the-art, and future perspectives of bio-optical modeling for each optically active component of inland waters, providing a broad range of applications of water quality monitoring using remote sensing. Rather than discussing optical radiometry theories, the authors explore the applications of these theories to inland aquatic environments. The book not only covers applications, but also discusses new possibilities, making the bio-optical theories operational, a concept that is of great interest to both government and private sector organizations. In addition, it addresses not only the physical theory that makes bio-optical modeling possible, but also the implementation and applications of bio-optical modeling in inland waters. Early chapters introduce the concepts of bio-optical modeling and the classification of bio-optical models and satellite capabilities both in existence and in development. Later chapters target specific optically active components (OACs) for inland waters and present the current status and future direction of bio-optical modeling for the OACs. Concluding sections provide an overview of a governance strategy for global monitoring of inland waters based on earth observation and bio-optical modeling. - Presents comprehensive chapters that each target a different optically active component of inland waters - Contains contributions from respected and active professionals in the field - Presents applications of bio-optical modeling theories that are applicable to researchers, professionals, and government agencies
Inland Waterway (IW), or river vessels are in every respect different from the seagoing ships. The professional literature is mostly focused on conventional seagoing fleets, leaving a gap in the documentation of design practices for IW vessels. The principal attribute that differentiates river vessels from the seagoing ships is the low, or shallow, draught due to water depth restrictions. This book addresses key aspects for the design of contemporary, shallow draught IW vessels for the transport of dry cargo (containers and bulk cargo). Most of the logic that is presented is applicable to the design of river vessels for any river, but the material that is presented is focused on vessels for the River Danube and its tributaries. The term ‘contemporary river vessel’ assumes that the present-day technology and current Danube river infrastructure are taken into consideration in its design. It is believed that the technologies and concepts that are proposed here are applicable for all new vessel designs for the next 10 to 15 years. Other innovative technologies should be considered for designs beyond that horizon. Moreover, nowadays contemporary IW vessel must be in harmony with the Environmentally Sustainable Transport (EST) policies and hence special attention is paid to both ecology and efficiency. Note however that shipowners and ship operators usually tend to choose the conventional cost-effective transport technologies. Given that potential divergence of interests, the concepts and technologies treated here may be regarded as innovative.
Inland Waterway Transportation explores how tools of economic analysis can improve the efficiency of both public and private investment in inland waterway transportation. Originally published in 1969, this study investigates how waterway transportation has been affected by public operating policy, costs and charges for the use of waterways in the United States as well as the impact of relationships central to waterway policy and individual firms such as the effect of the waterway environment on a firm’s efficiency. This title will be of interest to students of Environmental Studies and professionals.
Effects of global warming on the physical, chemical, ecological structure and function and biodiversity of freshwater ecosystems are not well understood and there are many opinions on how to adapt aquatic environments to global warming in order to minimize the negative effects of climate change. Climatic Change and Global Warming of Inland Waters presents a synthesis of the latest research on a whole range of inland water habitats – lakes, running water, wetlands – and offers novel and timely suggestions for future research, monitoring and adaptation strategies. A global approach, offered in this book, encompasses systems from the arctic to the Antarctic, including warm-water systems in the tropics and subtropics and presents a unique and useful source for all those looking for contemporary case studies and presentation of the latest research findings and discussion of mitigation and adaptation throughout the world. Edited by three of the leading limnologists in the field this book represents the latest developments with a focus not only on the impact of climate change on freshwater ecosystems but also offers a framework and suggestions for future management strategies and how these can be implemented in the future. Limnologists, Climate change biologists, fresh water ecologists, palaeoclimatologists and students taking relevant courses within the earth and environmental sciences will find this book invaluable. The book will also be of interest to planners, catchment managers and engineers looking for solutions to broader environmental problems but who need to consider freshwater ecology.
This book is open access under a CC BY 4.0 license. This volume focuses on microscopic plastic debris, also referred to as microplastics, which have been detected in aquatic environments around the globe and have accordingly raised serious concerns. The book explores whether microplastics represent emerging contaminants in freshwater systems, an area that remains underrepresented to date. Given the complexity of the issue, the book covers the current state-of-research on microplastics in rivers and lakes, including analytical aspects, environmental concentrations and sources, modelling approaches, interactions with biota, and ecological implications. To provide a broader perspective, the book also discusses lessons learned from nanomaterials and the implications of plastic debris for regulation, politics, economy, and society. In a research field that is rapidly evolving, it offers a solid overview for environmental chemists, engineers, and toxicologists, as well as water managers and policy-makers.
This book is an outgrowth of research contributions and teaching experiences by all the authors in applying modern fluid mechanics to problems of pollutant transport and mixing in the water environment. It should be suitable for use in first year graduate level courses for engineering and science students, although more material is contained than can reasonably be taught in a one-year course, and most instructors will probably wish to cover only selected potions. The book should also be useful as a reference for practicing hydraulic and environmental engineers, as well as anyone involved in engineering studies for disposal of wastes into the environment. The practicing consulting or design engineer will find a thorough explanation of the fundamental processes, as well as many references to the current technical literature, the student should gain a deep enough understanding of basics to be able to read with understanding the future technical literature evolving in this evolving field.