Download Free Inhibition Of Human Telomerase By Targeting Its Transitory Rna Dna Heteroduplex Book in PDF and EPUB Free Download. You can read online Inhibition Of Human Telomerase By Targeting Its Transitory Rna Dna Heteroduplex and write the review.

This volume presents techniques needed for the study of long non-coding RNAs (lncRNAs) in cancer from their identification to functional characterization. Chapters guide readers through identification of lncRNA expression signatures in cancer tissue or liquid biopsies by RNAseq, single Cell RNAseq, Phospho RNAseq or Nanopore Sequencing techniques; validation of lncRNA signatures by Real time PCR, digital PCR or in situ hybridization; and functional analysis by siRNA or CRISPR based methods for lncRNA silencing or overexpression. Lipid based nanoparticles for delivery of siRNAs in vivo, lncRNA-protein interactions, viral lncRNAs and circRNAs are also treated in this volume. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and practical, Long Non-Coding RNAs in Cancer aims to provide a collection of laboratory protocols, bioinformatic pipelines, and review chapters to further research in this vital field.
Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.
Stem cells have been gaining a lot of attention in recent years. Their unique potential to self-renew and differentiate has turned them into an attractive model for the study of basic biological questions such as cell division, replication, transcription, cell fate decisions, and more. With embryonic stem (ES) cells that can generate each cell type in the mammalian body and adult stem cells that are able to give rise to the cells within a given lineage, basic questions at different developmental stages can be addressed. Importantly, both adult and embryonic stem cells provide an excellent tool for cell therapy, making stem cell research ever more pertinent to regenerative medicine. As the title The Cell Biology of Stem Cells suggests, our book deals with multiple aspects of stem cell biology, ranging from their basic molecular characteristics to the in vivo stem cell trafficking of adult stem cells and the adult stem-cell niche, and ends with a visit to regeneration and cell fate reprogramming. In the first chapter, “Early embryonic cell fate decisions in the mouse”, Amy Ralson and Yojiro Yamanaka describe the mechanisms that support early developmental decisions in the mouse pre-implantation embryo and the current understanding of the source of the most immature stem cell types, which includes ES cells, trophoblast stem (TS) cells and extraembryonic endoderm stem (XEN) cells.
The study of RNA-protein interactions is crucial to understanding the mechanisms and control of gene expression and protein synthesis. The realization that RNAs are often far more biologically active than was previously appreciated has stimulated a great deal of new research in this field. Uniquely, in this book, the world's leading researchers have collaborated to produce a comprehensive and current review of RNA-protein interactions for all scientists working in this area. Timely, comprehensive, and authoritative, this new Frontiers title will be invaluable for all researchers in molecular biology, biochemistry and structural biology.
The processes of DNA recombination and repair are vital to cell integrity - an error can lead to disease such as cancer. It is therefore a large and exciting area of research and is also taught on postgraduate and undergraduate courses. This book is not a comprehensive view of the field, but a selection of the issues currently at the forefront of knowledge.
The ?eld of cellular responses to DNA damage has attained widespread recognition and interest in recent years commensurate with its fundamental role in the ma- tenance of genomic stability. These responses, which are essential to preventing cellular death or malignant transformation, are organized into a sophisticated s- tem designated the “DNA damage response”. This system operates in all living organisms to maintain genomic stability in the face of constant attacks on the DNA from a variety of endogenous by-products of normal metabolism, as well as exogenous agents such as radiation and toxic chemicals in the environment. The response repairs DNA damage via an intricate cellular signal transduction network that coordinates with various processes such as regulation of DNA replication, tr- scriptional responses, and temporary cell cycle arrest to allow the repair to take place. Defects in this system result in severe genetic disorders involving tissue degeneration, sensitivity to speci?c damaging agents, immunode?ciency, genomic instability, cancer predisposition and premature aging. The ?nding that many of the crucial players involved in DNA damage response are structurally and functionally conserved in different species spurred discoveries of new players through similar analyses in yeast and mammals. We now understand the chain of events that leads to instantaneous activation of the massive cellular responses to DNA lesions. This book summarizes several new concepts in this rapidly evolving ?eld, and the advances in our understanding of the complex network of processes that respond to DNA damage.
This volume focuses on pharmaceutical biotechnology as a key area of life sciences. The complete range of concepts, processes and technologies of biotechnology is applied in modern industrial pharmaceutical research, development and production. The results of genome sequencing and studies of biological-genetic function are combined with chemical, micro-electronic and microsystem technology to produce medical devices and diagnostic biochips. A multitude of biologically active molecules is expanded by additional novel structures created with newly arranged gene clusters and bio-catalytic chemical processes. New organisational structures in the co-operation of institutes, companies and networks enable faster knowledge and product development and immediate application of the results of research and process development. This book is the ideal source of information for scientists and engineers in research and development, for decision-makers in biotech, pharma and chemical corporations, as well as for research institutes, but also for founders of biotech companies and people working for venture capital corporations.
This work offers a fascinating insight into a crucial genetic process. Recombination is, quite simply, one of the most important topics in contemporary biology. This book is a totally comprehensive treatment of the subject, summarizing all existing views on the topic and at the same time putting them into context. It provides in-depth and up-to-date analysis of the chapter topics, and has been written by international experts in the field.
This book is a comprehensive review of the detailed molecular mechanisms of and functional crosstalk among the replication, recombination, and repair of DNA (collectively called the "3Rs") and the related processes, with special consciousness of their biological and clinical consequences. The 3Rs are fundamental molecular mechanisms for organisms to maintain and sometimes intentionally alter genetic information. DNA replication, recombination, and repair, individually, have been important subjects of molecular biology since its emergence, but we have recently become aware that the 3Rs are actually much more intimately related to one another than we used to realize. Furthermore, the 3R research fields have been growing even more interdisciplinary, with better understanding of molecular mechanisms underlying other important processes, such as chromosome structures and functions, cell cycle and checkpoints, transcriptional and epigenetic regulation, and so on. This book comprises 7 parts and 21 chapters: Part 1 (Chapters 1–3), DNA Replication; Part 2 (Chapters 4–6), DNA Recombination; Part 3 (Chapters 7–9), DNA Repair; Part 4 (Chapters 10–13), Genome Instability and Mutagenesis; Part 5 (Chapters 14–15), Chromosome Dynamics and Functions; Part 6 (Chapters 16–18), Cell Cycle and Checkpoints; Part 7 (Chapters 19–21), Interplay with Transcription and Epigenetic Regulation. This volume should attract the great interest of graduate students, postdoctoral fellows, and senior scientists in broad research fields of basic molecular biology, not only the core 3Rs, but also the various related fields (chromosome, cell cycle, transcription, epigenetics, and similar areas). Additionally, researchers in neurological sciences, developmental biology, immunology, evolutionary biology, and many other fields will find this book valuable.