Download Free Information Theory And Best Practices In The It Industry Book in PDF and EPUB Free Download. You can read online Information Theory And Best Practices In The It Industry and write the review.

​​​The importance of benchmarking in the service sector is well recognized as it helps in continuous improvement in products and work processes. Through benchmarking, companies have strived to implement best practices in order to remain competitive in the product- market in which they operate. However studies on benchmarking, particularly in the software development sector, have neglected using multiple variables and therefore have not been as comprehensive. Information Theory and Best Practices in the IT Industry fills this void by examining benchmarking in the business of software development and studying how it is affected by development process, application type, hardware platforms used, and many other variables. Information Theory and Best Practices in the IT Industry begins by examining practices of benchmarking productivity and critically appraises them. Next the book identifies different variables which affect productivity and variables that affect quality, developing useful equations that explaining their relationships. Finally these equations and findings are applied to case studies. Utilizing this book, practitioners can decide about what emphasis they should attach to different variables in their own companies, while seeking to optimize productivity and defect density.
​​​The importance of benchmarking in the service sector is well recognized as it helps in continuous improvement in products and work processes. Through benchmarking, companies have strived to implement best practices in order to remain competitive in the product- market in which they operate. However studies on benchmarking, particularly in the software development sector, have neglected using multiple variables and therefore have not been as comprehensive. Information Theory and Best Practices in the IT Industry fills this void by examining benchmarking in the business of software development and studying how it is affected by development process, application type, hardware platforms used, and many other variables. Information Theory and Best Practices in the IT Industry begins by examining practices of benchmarking productivity and critically appraises them. Next the book identifies different variables which affect productivity and variables that affect quality, developing useful equations that explaining their relationships. Finally these equations and findings are applied to case studies. Utilizing this book, practitioners can decide about what emphasis they should attach to different variables in their own companies, while seeking to optimize productivity and defect density.
This book is devoted to the theory of probabilistic information measures and their application to coding theorems for information sources and noisy channels. The eventual goal is a general development of Shannon's mathematical theory of communication, but much of the space is devoted to the tools and methods required to prove the Shannon coding theorems. These tools form an area common to ergodic theory and information theory and comprise several quantitative notions of the information in random variables, random processes, and dynamical systems. Examples are entropy, mutual information, conditional entropy, conditional information, and discrimination or relative entropy, along with the limiting normalized versions of these quantities such as entropy rate and information rate. Much of the book is concerned with their properties, especially the long term asymptotic behavior of sample information and expected information. This is the only up-to-date treatment of traditional information theory emphasizing ergodic theory.
See:
Big Data and Information Theory are a binding force between various areas of knowledge that allow for societal advancement. Rapid development of data analytic and information theory allows companies to store vast amounts of information about production, inventory, service, and consumer activities. More powerful CPUs and cloud computing make it possible to do complex optimization instead of using heuristic algorithms, as well as instant rather than offline decision-making. The era of "big data" challenges includes analysis, capture, curation, search, sharing, storage, transfer, visualization, and privacy violations. Big data calls for better integration of optimization, statistics, and data mining. In response to these challenges this book brings together leading researchers and engineers to exchange and share their experiences and research results about big data and information theory applications in various areas. This book covers a broad range of topics including statistics, data mining, data warehouse implementation, engineering management in large-scale infrastructure systems, data-driven sustainable supply chain network, information technology service offshoring project issues, online rumors governance, preliminary cost estimation, and information system project selection. The chapters in this book were originally published in the journal, International Journal of Management Science and Engineering Management.
The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
Information Theory: Coding Theorems for Discrete Memoryless Systems presents mathematical models that involve independent random variables with finite range. This three-chapter text specifically describes the characteristic phenomena of information theory. Chapter 1 deals with information measures in simple coding problems, with emphasis on some formal properties of Shannon's information and the non-block source coding. Chapter 2 describes the properties and practical aspects of the two-terminal systems. This chapter also examines the noisy channel coding problem, the computation of channel capacity, and the arbitrarily varying channels. Chapter 3 looks into the theory and practicality of multi-terminal systems. This book is intended primarily for graduate students and research workers in mathematics, electrical engineering, and computer science.
The visualization process doesn’t happen in a vacuum; it is grounded in principles and methodologies of design, cognition, perception, and human-computer-interaction that are combined to one’s personal knowledge and creative experiences. Design for Information critically examines other design solutions —current and historic— helping you gain a larger understanding of how to solve specific problems. This book is designed to help you foster the development of a repertoire of existing methods and concepts to help you overcome design problems. Learn the ins and outs of data visualization with this informative book that provides you with a series of current visualization case studies. The visualizations discussed are analyzed for their design principles and methods, giving you valuable critical and analytical tools to further develop your design process. The case study format of this book is perfect for discussing the histories, theories and best practices in the field through real-world, effective visualizations. The selection represents a fraction of effective visualizations that we encounter in this burgeoning field, allowing you the opportunity to extend your study to other solutions in your specific field(s) of practice. This book is also helpful to students in other disciplines who are involved with visualizing information, such as those in the digital humanities and most of the sciences.