Download Free Inferring Hospital Quality From Patient Discharge Records Using A Bayesian Selection Model Book in PDF and EPUB Free Download. You can read online Inferring Hospital Quality From Patient Discharge Records Using A Bayesian Selection Model and write the review.

This paper develops new econometric methods to estimate hospital quality and other models with discrete dependent variables and non-random selection. Mortality rates in patient discharge records are widely used to infer hospital quality. However, hospital admission is not random and some hospitals may attract patients with greater unobserved severity of illness than others. In this situation the assumption of random admission leads to spurious inference about hospital quality. This study controls for hospital selection using a model in which distance between the patient?s residence and alternative hospitals are key exogenous variables. Bayesian inference in this model is feasible using a Markov chain Monte Carlo posterior simulator, and attaches posterior probabilities to quality comparisons between individual hospitals and groups of hospitals. The study uses data on 77,937 Medicare patients admitted to 117 hospitals in Los Angeles County from 1989 through 1992 with a diagnosis of pneumonia. It finds higher quality in smaller hospitals than larger, and in private for-profit hospitals than in hospitals in other ownership categories. Variations in unobserved severity of illness across hospitals is at least a great as variation in hospital quality. Consequently a conventional probit model leads to inferences about quality markedly different than those in this study?s selection model.
This paper develops new econometric methods to infer hospital quality in a model with discrete dependent variables and non-random selection. Mortality rates in patient discharge records are widely used to infer hospital quality. However, hospital admission is not random and some hospitals may attract patients with greater unobserved severity of illness than others. In this situation the assumption of random admission leads to spurious inference about hospital quality. This study controls for hospital selection using a model in which distance between the patient's residence and alternative hospitals are key exogenous variables. Bayesian inference in this model is feasible using a Markov chain Monte Carlo posterior simulator, and attaches posterior probabilities to quality comparisons between individual hospitals and groups of hospitals. The study uses data on 74,848 Medicare patients admitted to 114 hospitals in Los Angeles County from 1989 through 1992 with a diagnosis of pneumonia. It finds the smallest and largest hospitals to be of high quality and public hospitals to be of low quality. There is strong evidence of dependence between the unobserved severity of illness and the assignment of patients to hospitals. Consequently a conventional probit model leads to inferences about quality markedly different than those in this study's selection model.
This paper develops new econometric methods to infer hospital quality in a model with discrete dependent variables and non-random selection. Mortality rates in patient discharge records are widely used to infer hospital quality. However, hospital admission is not random and some hospitals may attract patients with greater unobserved severity of illness than others. In this situation the assumption of random admission leads to spurious inference about hospital quality. This study controls for hospital selection using a model in which distance between the patient's residence and alternative hospitals are key exogenous variables. Bayesian inference in this model is feasible using a Markov chain Monte Carlo posterior simulator, and attaches posterior probabilities to quality comparisons between individual hospitals and groups of hospitals. The study uses data on 74,848 Medicare patients admitted to 114 hospitals in Los Angeles County from 1989 through 1992 with a diagnosis of pneumonia. It finds the smallest and largest hospitals to be of the highest quality. There is strong evidence of dependence between the unobserved severity of illness and the assignment of patients to hospitals, whereby patients with a high unobserved severity of illness are disproportionately admitted to high quality hospitals. Consequently a conventional probit model leads to inferences about quality markedly different than those in this study's selection model.
Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.