Download Free Industrial Metrology For Medical Products And Devices Book in PDF and EPUB Free Download. You can read online Industrial Metrology For Medical Products And Devices and write the review.

Medical progress is associated with innovative product developments in medical technology, e.g. for different implants and instruments. The developments are also characterized by increasing miniaturization and precision. Hence the demands on the geometric and surface characteristics of the usually complex form elements are growing. Consequently, the need for highly-accurate dimensional inspection for the verification of these characteristics is rapidly increasing. ZEISS successfully and reliably faces these challenges. Being a leading manufacturer of medical technology as well as of measurement and inspection technology, the company ZEISS has a high level of know-how in the industrial production of medical devices and products. This book presents the metrological solutions for the medical technology and explains their application. The required measuring machines and the task-based sensors are addressed to the same extent as the challenges regarding automated 100 % checks. Methods for checking the reliability of measuring results and evaluating the inspection process quality are presented and the required procedures are described in detail. The extended regulations for medical devices and products, e.g. by FDA and MDR, place high demands on the measurement technology used and on the electronic documentation of measurement results. This is addressed in detail at the end of the book; in the appendix, easy-to-use checklists for the regulations according to 21 CFR Part 11 are provided.
"This book gives the reader an up-to-date overview of the medical device manufacturing process and its influence on current regulations highlighting the importance of quality control in pharmaceutical products and medical devices, which must have very high-quality standards so as not to cause problems to the health of patients"--
Quality assurance in aviation and space industry poses extraordinary challenges for measurement engineers. High standards for safety-critical parts must be maintained without reducing manufacturing speed and overall productivity. At the same time, the demands on the aerospace industry to develop aircraft that are as fuel-efficient and quiet as possible have increased enormously. And the aerospace industry wants to meet these requirements, whether in terms of noise emissions or fuel consumption. This is where industrial metrology with all its inspection capabilities, sensors and software solutions can make a valuable contribution. These possibilities are shown in this book. The demands placed on the aerospace industry are reinforced by strict regulations and approval processes – including additional specifications, traceability, conformity and certification standards. Be it EN/AS 9100, NadCap, test procedures according to AS 13003, 13006, EN/AS 9138 or others, the implementation of these procedures with coordinate measuring systems is part of this book.
Americans praise medical technology for saving lives and improving health. Yet, new technology is often cited as a key factor in skyrocketing medical costs. This volume, second in the Medical Innovation at the Crossroads series, examines how economic incentives for innovation are changing and what that means for the future of health care. Up-to-date with a wide variety of examples and case studies, this book explores how payment, patent, and regulatory policiesâ€"as well as the involvement of numerous government agenciesâ€"affect the introduction and use of new pharmaceuticals, medical devices, and surgical procedures. The volume also includes detailed comparisons of policies and patterns of technological innovation in Western Europe and Japan. This fact-filled and practical book will be of interest to economists, policymakers, health administrators, health care practitioners, and the concerned public.
The term 'medical devices' covers a wide range of equipment essential for patient care at every level of the health service, whether at the bedside, at a health clinic or in a large specialised hospital. Yet many countries lack access to high-quality devices, particularly in developing countries where health technology assessments are rare and there is a lack of regulatory controls to prevent the use of substandard devices. This publication provides a guidance framework for countries wishing to create or modify their own regulatory systems for medical devices, based on best practice experience in other countries. Issues highlighted include: the need for harmonised regulations; and the adoption, where appropriate, of device approvals of advanced regulatory systems to avoid an unnecessary drain on scarce resources. These approaches allow emphasis to be placed on locally-assessed needs, including vendor and device registration, training and surveillance and information exchange systems.
Medical devices that are deemed to have a moderate risk to patients generally cannot go on the market until they are cleared through the FDA 510(k) process. In recent years, individuals and organizations have expressed concern that the 510(k) process is neither making safe and effective devices available to patients nor promoting innovation in the medical-device industry. Several high-profile mass-media reports and consumer-protection groups have profiled recognized or potential problems with medical devices cleared through the 510(k) clearance process. The medical-device industry and some patients have asserted that the process has become too burdensome and is delaying or stalling the entry of important new medical devices to the market. At the request of the FDA, the Institute of Medicine (IOM) examined the 510(k) process. Medical Devices and the Public's Health examines the current 510(k) clearance process and whether it optimally protects patients and promotes innovation in support of public health. It also identifies legislative, regulatory, or administrative changes that will achieve the goals of the 510(k) clearance process. Medical Devices and the Public's Health recommends that the U.S. Food and Drug Administration gather the information needed to develop a new regulatory framework to replace the 35-year-old 510(k) clearance process for medical devices. According to the report, the FDA's finite resources are best invested in developing an integrated premarket and postmarket regulatory framework.
Quality control in pharmaceutical products and medical devices is vital for users as failing to comply with national and international regulations can lead to accidents that could easily be avoided. For this reason, manufacturing a quality medical product will support patient safety. Microbiologists working in both the pharmaceutical and medical device industries face considerable challenges in keeping abreast of the myriad microbiological references available to them and the continuously evolving regulatory requirements. Quality Control Applications in the Pharmaceutical and Medical Device Manufacturing Industry presents the importance of quality control in pharmaceutical products and medical devices, which must have very high-quality standards to not cause problems to the health of patients. It reinforces and updates the knowledge of analytical, instrumental, and biological methods to demonstrate the correct quality control and good manufacturing practice for pharmaceutical products and medical devices. Covering topics such as pharmaceutical nano systems, machine learning, and software validation, this book is an essential resource for managers, engineers, supervisors, pharmacists, chemists, academicians, and researchers.
Metrology is an integral part of the structure of today’s world: navigation and telecommunications require highly accurate time and frequency standards; human health and safety relies on authoritative measurements in diagnosis and treatment, as does food production and trade; global climate studies also depend on reliable and consistent data. Moreover, international trade practices increasingly require institutions to display demonstrated conformity to written standards and specifications. As such, having relevant and reliable results of measurements and tests in compliance with mutually recognised standards can be a technical, commercial and statutory necessity for a company. This book, the results of a working group from the French College of Metrology and featuring chapters written by a range of experts from a variety of European countries, gives a comprehensive and international treatment of the subject. Academics involved in metrology as well as people involved in the metrology capacities of companies and institutions will find this book of great interest.
The subject of this book is surface metrology, in particular two major aspects: surface texture and roundness. It has taken a long time for manufacturing engineers and designers to realise the usefulness of these features in quality of conformance and quality of design. Unfortunately this awareness has come at a time when engineers versed in the use and specification of surfaces are at a premium. Traditionally surface metrology usage has been dictated by engineers who have served long and demanding apprenticeships, usually in parallel with studies leading to technician-level qualifications. Such people understood the processes and the achievable accuracies of machine tools, thereby enabling them to match production capability with design requirements. This synergy, has been made possible by the understanding of adherence to careful metrological procedures and a detailed knowledge of surface measuring instruments and their operation, in addition to wider inspection room techniques. With the demise in the UK of polytechnics and technical colleges, this source of skilled technicians has all but dried up. The shortfall has been made up of semi skilled craftsmen, or inexperienced graduates who cannot be expected to satisfy tradition al or new technology needs. Miniaturisation, for example, has had a pro found effect. Engineering parts are now routinely being made with nanometre surface texture and fiatness. At these molecular and atomic scales, the engineer has to be a physicist.