Download Free Industrial Crystallization Proceedings Book in PDF and EPUB Free Download. You can read online Industrial Crystallization Proceedings and write the review.

Crystallization is an important separation and purification process used in industries ranging from bulk commodity chemicals to specialty chemicals and pharmaceuticals. In recent years, a number of environmental applications have also come to rely on crystallization in waste treatment and recycling processes.The authors provide an introduction to the field of newcomers and a reference to those involved in the various aspects of industrial crystallization. It is a complete volume covering all aspects of industrial crystallization, including material related to both fundamentals and applications. This new edition presents detailed material on crystallization of biomolecules, precipitation, impurity-crystal interactions, solubility, and design.Provides an ideal introduction for industrial crystallization newcomers Serves as a worthwhile reference to anyone involved in the fieldCovers all aspects of industrial crystallization in a single, complete volume
Crystallization is an important technique for separation and purification of substances as well as for product design in chemical, pharmaceutical and biotechnological process industries. This ready reference and handbook draws on research work and industrial practice of a large group of experts in the various areas of industrial crystallization processes, capturing the essence of current trends, the markets, design tools and technologies in this key field. Along the way, it outlines trouble free production, provides laboratory controls, analyses case studies and discusses new challenges. First the instrumentation and techniques used to measure the crystal size distribution, the nucleation and solubility points, and the chemical composition of the solid and liquid phase are outlined. Then the main techniques adopted to control industrial crystallizers, starting from fundamental approaches to the most advanced ones, including the multivariable predictive control are described. An overview of the main crystallizer types is given with details of the main control schemes adopted in industry as well as the more suitable sensors and actuators.
Incorporating all recent developments and applications of crystallization technology, this volume offers a clear account of the field's underlying principles, reviews of past and current research, and provides guidelines for equipment and process design. The book takes a balanced functional approach in its critical survey of research literature, and includes several problems based on real practical situations that illustrate theoretical development. Several new concepts and techniques used in process simulation and identification analysis are featured.
Bridging the gap between theory and practice, this text provides the reader with a comprehensive overview of industrial crystallization. Newcomers will learn all of the most important topics in industrial crystallization, from key concepts and basic theory to industrial practices. Topics covered include the characterization of a crystalline product and the basic process design for crystallization, as well as batch crystallization, measurement techniques, and details on precipitation, melt crystallization and polymorphism. Each chapter begins with an introduction explaining the importance of the topic, and is supported by homework problems and worked examples. Real world case studies are also provided, as well as new industry-relevant information, making this is an ideal resource for industry practitioners, students, and researchers in the fields of industrial crystallization, separation processes, particle synthesis, and particle technology.
Filled with industrial examples emphasizing the practical applications of crystallization methodologies Based on the authors' hands-on experiences as process engineers at Merck, Crystallization of Organic Compounds guides readers through the practical aspects of crystallization. It uses plenty of case studies and examples of crystallization processes, ranging from development through manufacturing scale-up. The book not only emphasizes strategies that have been proven successful, it also helps readers avoid common pitfalls that can render standard procedures unsuccessful. The goal of this text is twofold: Build a deeper understanding of the fundamental properties of crystallization as well as the impact of these properties on crystallization process development. Improve readers' problem-solving abilities by using actual industrial examples with real process constraints. Crystallization of Organic Compounds begins with detailed discussions of fundamental thermodynamic properties, nucleation and crystal growth kinetics, process dynamics, and scale-up considerations. Next, it investigates modes of operation, including cooling, evaporation, anti-solvent, and reactive crystallization. The authors conclude with special applications such as ultrasound in crystallization and computational fluid dynamics in crystallization. Most chapters feature multiple examples that guide readers step by step through the crystallization of active pharmaceutical ingredients (APIs). With its focus on industrial applications, this book is recommended for chemical engineers and chemists who are involved with the development, scale-up, or operation of crystallization processes in the pharmaceutical and fine chemical industries.
Crystallization is a natural occurring process but also a process abundantly used in the industry. Crystallization can occur from a solution, from the melt or via deposition of material from the gas phase (desublimation). Crystals distinguish themself from liquids, gases and amorphous substances by the long-range order of its building blocks that entail the crystals to be formed of well-defined faces, and give rise to a large number of properties of the solid. Crystallization is used at some stage in nearly all process industries as a method of production, purification or recovery of solid materials. Crystallization is practiced on all scales: from the isolation of the first milligrams of a newly synthesized substance in the research laboratory to isolating products on the mulit-million tonne scale in industry. The book describes the breadth of crystallization operations, from isolation from a reaction broth to purification and finally to tailoring product properties. In the first section of the book, the basic mechanisms - nucleation, growth, attrition and agglomeration are introduced. It ensures an understanding of supersaturation, the driving force of crystallization. Furthermore, the solubility of the substance and its dependences on process conditions and the various techniques of crystallization and their possibilities and limitations are discussed. Last but not least, the first part includes an intensive treatment of polymorphism . The second part builds on the basics, exploring how crystallization processes can be developed, either batch-wise or continuous, from solution or from the melt. A discussion of the purification during crystallization serves as a link between the two sections, where practical aspects and an insight using theoretical concepts are combined. Mixing and its influence on the crystallization as well as the mutual interference of down-stream processes with the crystallization are also treated. Finally, techniques to characterize the crop are discussed. The third part of the book is dedicated to accounts of actual developments and of carried-out crystallizations. Typical pitfalls and strategies to avoid these as well as the design of robust processes are presented.
Industrial Crystallization Symposia have been organized by the Crystallization Research Group at the Czechoslovak Research Institute for Inorganic Chemistry, Usti nad Labem, since 1960. Over the years, the increasing popularity of the unit operation of crystallization has been clearly demonstrated by the steady increase in numbers of both the papers presented and the attendances at the meetings. The 6th Symposium (1-3 September 1975) was organized jointly with the European Federation of Chemical Engineering Working Party on Crystallization, and the 44 papers presented were arranged into four sessions - A: Secondary Nucleation, B: Crystal Growth Kinetics, C: Crystal Habit Modification, D: Crystallizer Design, E: Indus trial Crystallizer Operation and Case Studies. The same groupings are preserved in this edited version of the proceedings. This is the first time that the Industrial Crystallization Symposium papers have appeared in one volume. After the 5th (1972) Symposium, authors we.re encouraged to submit their papers to an international journal specializing in crystallization. However, the results were not altogether satisfactory in that less than one third of the papers presented at the meeting were offered for consideration. This time, therefore, the organizing committee decided to attempt to keep the papers together by making arrangements for their pUblication by Plenum Press.
Particulate Crystal Characteristics; Fluid-particle Transport Processes; Crystallization Principles and Techniques; Crystal Formation Processes; Crystallizer Design and Operation; Solid-Liquid Separation Processes; Design of Crystallization Process Systems.
Continuous crystallization is an area of intense research, with particular respect to the pharmaceutical industry and fine chemicals. Improvements in continuous crystallization technologies offer chemical industries significant financial gains, through reduced expenditure and operational costs, and consistent product quality. Written by well-known leaders in the field, The Handbook of Continuous Crystallization presents fundamental and applied knowledge, with attention paid to application and scaling up, and the burgeoning area of process intensification. Beginning with concepts around crystallization techniques and control strategies, the reader will learn about experimental methods and computational tools. Case studies spanning fine and bulk chemicals, the pharmaceutical industry, and employing new mathematical tools, put theory into context.
This handbook seeks to facilitate the selection, design and operation of large-scale industrial crystallizers that process crystals with the proper size distribution, shape and purity sought. This second edition offers results on direct-contact cooling crystallization.