Download Free Industrial Chemistry Of Oxides For Emerging Applications Book in PDF and EPUB Free Download. You can read online Industrial Chemistry Of Oxides For Emerging Applications and write the review.

Valuable insights into the extraction, production, and properties of a large number of natural and synthetic oxides utilized in applications worldwide from ceramics, electronic components, and coatings This handbook describes each of the major oxides chronologically—starting from the processes of extraction of ores containing oxides, their purification and transformations into pure alloyed powders, and their appropriate characterization up to the processes of formation of 2D films by such methods as PVD, CVD, and coatings by thermal spraying or complicated 3D objects by sintering and rapid prototyping. The selection of oxides has been guided by the current context of industrial applications. An important point that is considered in the book concerns the strategic aspects of oxides. Some oxides (e.g. rare earth ones) become more expensive due to the growing demand for them, others, because of the strategic importance of countries producing raw materials and the countries that are using them. Industrial Chemistry of Oxides for Emerging Applications provides readers with everything they need to know in 7 chapters that cover: technical and economical importance of oxides in present and future; fundamentals of oxides manufacturing; extraction, properties, and applications of Al2O3; extraction, properties, and applications of ZrO2; synthesis, properties, and applications of YBaCu2O7x; extraction, properties, and applications of TiO2; and synthesis, properties, and application of hydroxyapatite. Presents the extraction, production, and properties of a large fraction of oxides applications worldwide, both natural as well as synthetic multi‐oxides Covers a very important segment of many industrial processes, such as refractories and piezoelectric oxides—both applications constituting very large market segments Developed from a lecture course given by the authors for over a decade Industrial Chemistry of Oxides for Emerging Applications is an excellent text for university professors and teachers, and graduate and postgraduate students with a solid background in physics and chemistry.
Valuable insights into the extraction, production, and properties of a large number of natural and synthetic oxides utilized in applications worldwide from ceramics, electronic components, and coatings This handbook describes each of the major oxides chronologically'starting from the processes of extraction of ores containing oxides, their purification and transformations into pure alloyed powders, and their appropriate characterization up to the processes of formation of 2D films by such methods as PVD, CVD, and coatings by thermal spraying or complicated 3D objects by sintering and rapid prototyping. The selection of oxides has been guided by the current context of industrial applications. An important point that is considered in the book concerns the strategic aspects of oxides. Some oxides (e.g. rare earth ones) become more expensive due to the growing demand for them, others, because of the strategic importance of countries producing raw materials and the countries that are using them. Industrial Chemistry of Oxides for Emerging Applications provides readers with everything they need to know in 7 chapters that cover: technical and economical importance of oxides in present and future; fundamentals of oxides manufacturing; extraction, properties, and applications of Al2O3; extraction, properties, and applications of ZrO2; synthesis, properties, and applications of YBaCu2O7x; extraction, properties, and applications of TiO2; and synthesis, properties, and application of hydroxyapatite.' -Presents the extraction, production, and properties of a large fraction of oxides applications worldwide, both natural as well as synthetic multi-oxides -Covers a very important segment of many industrial processes, such as refractories and piezoelectric oxides'both applications constituting very large market segments -Developed from a lecture course given by the authors for over a decade Industrial Chemistry of Oxides for Emerging Applications is an excellent text for university professors and teachers, and graduate and postgraduate students with a solid background in physics and chemistry.
Valuable insights into the extraction, production, and properties of a large number of natural and synthetic oxides utilized in applications worldwide from ceramics, electronic components, and coatings This handbook describes each of the major oxides chronologically—starting from the processes of extraction of ores containing oxides, their purification and transformations into pure alloyed powders, and their appropriate characterization up to the processes of formation of 2D films by such methods as PVD, CVD, and coatings by thermal spraying or complicated 3D objects by sintering and rapid prototyping. The selection of oxides has been guided by the current context of industrial applications. An important point that is considered in the book concerns the strategic aspects of oxides. Some oxides (e.g. rare earth ones) become more expensive due to the growing demand for them, others, because of the strategic importance of countries producing raw materials and the countries that are using them. Industrial Chemistry of Oxides for Emerging Applications provides readers with everything they need to know in 7 chapters that cover: technical and economical importance of oxides in present and future; fundamentals of oxides manufacturing; extraction, properties, and applications of Al2O3; extraction, properties, and applications of ZrO2; synthesis, properties, and applications of YBaCu2O7x; extraction, properties, and applications of TiO2; and synthesis, properties, and application of hydroxyapatite. Presents the extraction, production, and properties of a large fraction of oxides applications worldwide, both natural as well as synthetic multi‐oxides Covers a very important segment of many industrial processes, such as refractories and piezoelectric oxides—both applications constituting very large market segments Developed from a lecture course given by the authors for over a decade Industrial Chemistry of Oxides for Emerging Applications is an excellent text for university professors and teachers, and graduate and postgraduate students with a solid background in physics and chemistry.
Advances in Metal Oxides and their Composites for Emerging Applications reviews key properties of metal-oxide based composites, including their structural, physicochemical, optical, electrical components and resulting performance in a wide range of diverse applications. Synthetic protocols used to create metal oxides with desirable morphologies, properties and performance for applications in solar energy harvesting, energy storage and environmental remediation are emphasized. Emerging technologies that address important global challenges such as energy shortage, the hazardous effects of non-renewable energy sources, unaffordable energy technologies, and the contaminants present in air and water are also covered. This book is an ideal resource for materials scientists and engineers working in academia and R&D. In addition, it's appropriate for those who either need an introduction to potential research directions or for experienced researchers and practitioners looking for a key reference on the latest advances. Introduces the fundamental properties of metal oxide-based composites, paying special attention to physicochemical, optical, electrical and structural characteristics Provides an overview of the synthetic protocols used to design and tune the properties of metal oxide-based composites for key emerging applications Discusses metal oxide-based composites and their use in energy applications such as energy storage, energy harvesting and environmental remediation
Functional oxides are used both as insulators and metallic conductors in key applications across all industrial sectors. This makes them attractive candidates in modern technology ? they make solar cells cheaper, computers more efficient and medical instrumentation more sensitive. Based on recent research, experts in the field describe novel materials, their properties and applications for energy systems, semiconductors, electronics, catalysts and thin films. This monograph is divided into 6 parts which allows the reader to find their topic of interest quickly and efficiently. * Magnetic Oxides * Dopants, Defects and Ferromagnetism in Metal Oxides * Ferroelectrics * Multiferroics * Interfaces and Magnetism * Devices and Applications This book is a valuable asset to materials scientists, solid state chemists, solid state physicists, as well as engineers in the electric and automotive industries.
Nano-oxide materials lend themselves to applications in a wide variety of emerging technological fields such as microelectronics, catalysts, ceramics, coatings, and energy storage. However, developing new routes for making nano-based materials is a challenging area for solid-state materials chemists. This book does just that by describing a novel method for preparing them. The authors have developed a novel low-temperature, self-propagating synthetic route to nano-oxides by the solution combustion and combustible precursor processes. This method provides the desired composition, structure, and properties for many types of technologically useful nanocrystalline oxide materials like alumina, ceria, iron oxides, titania, yttria, and zirconia, among others.The book is particularly instructive in bringing readers one step closer to the exploration of nanomaterials. Students of nanoscience can acquaint themselves with the actual production and evaluation of nanopowders by this route, while academic researchers and industrial scientists will find answers to a host of questions on nano-oxides. The book also provides an impetus for scientists in industrial research to evaluate and explore new ways to scale up the production of nanomaterials, offering helpful suggestions for further research.
Current oxide nanomaterials knowledge to draw from and build on Synthesis, Properties, and Applications of Oxide Nanomaterials summarizes the existing knowledge in oxide-based materials research. It gives researchers one comprehensive resource that consolidates general theoretical knowledge alongside practical applications. Organized by topic for easy access, this reference: * Covers the fundamental science, synthesis, characterization, physicochemical properties, and applications of oxide nanomaterials * Explains the fundamental aspects (quantum-mechanical and thermodynamic) that determine the behavior and growth mode of nanostructured oxides * Examines synthetic procedures using top-down and bottom-up fabrication technologies involving liquid-solid or gas-solid transformations * Discusses the sophisticated experimental techniques and state-of-the-art theory used to characterize the structural and electronic properties of nanostructured oxides * Describes applications such as sorbents, sensors, ceramic materials, electrochemical and photochemical devices, and catalysts for reducing environmental pollution, transforming hydrocarbons, and producing hydrogen With its combination of theory and real-world applications plus extensive bibliographic references, Synthesis, Properties, and Applications of Oxide Nanomaterials consolidates a wealth of current, complex information in one volume for practicing chemists, physicists, and materials scientists, and for engineers and researchers in government, industry, and academia. It's also an outstanding reference for graduate students in chemistry, chemical engineering, physics, and materials science.
The chemistry of metals has traditionally been more understood than that of its oxides. As catalytic applications continue to grow in a variety of disciplines, Metal Oxides: Chemistry and Applications offers a timely account of transition-metal oxides (TMO), one of the most important classes of metal oxides, in the context of catalysis. The first part of the book examines the crystal and electronic structure, stoichiometry and composition, redox properties, acid-base character, and cation valence states, as well as new approaches to the preparation of ordered TMO with extended structure of texturally defined systems. The second part compiles some practical aspects of TMO applications in materials science, chemical sensing, analytical chemistry, solid-state chemistry, microelectronics, nanotechnology, environmental decontamination, and fuel cells. The book examines many types of reactions - such as dehydration, reduction, selective oxidations, olefin metathesis, VOC removal, photo- and electrocatalysis, and water splitting - to elucidate how chemical composition and optical, magnetic, and structural properties of oxides affect their surface reactivity in catalysis. Drawing insight from leading international experts, Metal Oxides: Chemistry and Applications is a comprehensive and interdisciplinary reference for researchers that may also be used by newcomers as a guide to the field.
Tin Oxide Materials: Synthesis, Properties, and Applications discusses the latest in metal oxides, an emerging area in electronic materials. As more is learned about this important materials system, more functionalities and applications have been revealed. This key reference on the topic covers important material that is ideal for materials scientists, materials engineers and materials chemists who have been introduced to metal oxides as a general category of materials, but want to take the next step and learn more about a specific material. Provides a complete resource on tin oxide materials systems, including in-depth discussions of properties, their synthesis, modelling methods, and applications Presents information on the well-investigated SnO2, but also includes discussions on its emerging stoichiometries, such as SnO and Sn3O4 Includes the most relevant applications in varistors, sensing devices, fuel cells, transistors, biological studies, and much more
Metal Oxide–Carbon Hybrid Materials: Synthesis, Properties and Applications reviews the advances in the fabrication and application of metal oxide–carbon-based nanocomposite materials. Their unique properties make them ideal materials for gas-sensing, photonics, catalysis, opto-electronic, and energy-storage applications. In the first section, the historical background to the hybrid materials based on metal oxide–carbon and the hybridized metal oxide composites is provided. It also highlights several popular methods for the preparation of metal oxide–carbon composites through solid-state or solution-phase reactions, and extensively discusses the materials’ properties. Fossil fuels and renewable energy sources cannot meet the ever-increasing energy demands of an industrialized and technology-driven global society. Therefore, the role of metal oxide–carbon composites in energy generation, hydrogen production, and storage devices, such as rechargeable batteries and supercapacitors, is of extreme importance. These problems are discussed in in the second section of the book. Rapid industrialization has resulted in serious environmental issues which in turn have caused serious health problems that require the immediate attention of researchers. In the third section, the use of metal oxide–carbon composites in water purification, photodegradation of industrial contaminants, and biomedical applications that can help to clean the environment and provide better healthcare solutions is described. The final section is devoted to the consideration of problems associated with the development of sensors for various applications. Numerous studies performed in this area have shown that the use of composites can significantly improve the operating parameters of such devices. Metal Oxide–Carbon Hybrid Materials: Synthesis, Properties and Applications presents a comprehensive review of the science related to metal oxide–carbon composites and how researchers are utilizing these materials to provide solutions to a large array of problems. Reviews the fundamental properties and fabrication methods of metal-oxide–carbon composites Discusses applications in energy, including energy generation, hydrogen production and storage, rechargeable batteries, and supercapacitors Includes current and emerging applications in environmental remediation and sensing