Download Free Industrial Bioseparations Book in PDF and EPUB Free Download. You can read online Industrial Bioseparations and write the review.

Industrial Bioseparations offers comprehensive coverage of bioseparations including all unit operations. This new book offers a careful balance between the fundamentals of bioseparations processing and the practical applications in industry today. It is laid out in a methodical way with preliminary chapters covering general approaches to bioseparations for commercially important biomacromolecules, thermodynamics and mass transfer principles, and following chapters addressing unit operations such as filtration and chromatography. Lab experiments are included which emphasize obtaining scale up parameters as well as commonly used operating conditions are included.
The biopharmaceutical industry has become an increasingly important player in the global economy, and the success of these products depends on the development and implementation of cost-effective, robust and scaleable production processes. Bioseparations-also called downstream processing- can be a key source of competitive advantageto biopharmaceut
The use of biotechnology in chemical synthesis offers up numerous advantages to the engineer in the process industries, but it also presents a number of fundamental challenges and difficulties which impinge directly on separation process requirements. The use of biochemical separations has grown significantly during the past decade, and is especially used in process industries such as healthcare and food processing. However it is becoming increasingly more important in areas such as recycling and waste-water treatment and as industry shifts towards cleaner processes biochemical separations will continue to grow. The two main objectives of this book are to focus on the application of existing separation process techniques to the recovery and purification of biologically derived products and to examine the state of knowledge of new techniques which have future potential. Within these objectives the complexities and breadth of problems associated with biological separations are discussed, specific engineering techniques are featured and their adaptation to biochemical separations are highlighted.
Designed for undergraduates, graduate students, and industry practitioners, Bioseparations Science and Engineering fills a critical need in the field of bioseparations. Current, comprehensive, and concise, it covers bioseparations unit operations in unprecedented depth. In each of the chapters, the authors use a consistent method of explaining unit operations, starting with a qualitative description noting the significance and general application of the unit operation. They then illustrate the scientific application of the operation, develop the required mathematical theory, and finally, describe the applications of the theory in engineering practice, with an emphasis on design and scaleup. Unique to this text is a chapter dedicated to bioseparations process design and economics, in which a process simular, SuperPro Designer® is used to analyze and evaluate the production of three important biological products. New to this second edition are updated discussions of moment analysis, computer simulation, membrane chromatography, and evaporation, among others, as well as revised problem sets. Unique features include basic information about bioproducts and engineering analysis and a chapter with bioseparations laboratory exercises. Bioseparations Science and Engineering is ideal for students and professionals working in or studying bioseparations, and is the premier text in the field.
Offers a concise introduction to the separation and purification of biochemicals. Bridges two scientific cultures, providing an introduction to bioseparations for scientists with no background in engineering and for engineers with little grounding in biology. The authors supplement the ideas by simple worked examples, making the techniques of bioseparations easy to learn. Discusses removal of insolubles, product isolation, purification and polishing.
This manual contains necessary and useful information and data in an easily accessible format relating to the use of membranes. Membranes are among the most important engineering components in use today, and each year more and more effective uses for membrane technologies are found - for example: water purification, industrial effluent treatment, solvent dehydration by per-vaporation, recovery of volatile organic compounds, protein recovery, bioseparations and many others.The pace of change in the membrane industry has been accelerating rapidly in recent years, occasioned in part by the demand of end-users, but also as a result of the investment in R&D by manufacturers. To reflect these changes the author has obtained the latest information from some of the leading suppliers in the business. In one complete volume this unique handbook gives practical guidance to using selected membrane processes in individual industries while also providing a useful guide to equipment selection and usage.
This book is intended for use of students who need to learn the techniques of protein purification, large-scale processing and design, and scale-up for the biotechnology and pharmaceutical industries. This book will fill the present gap in the market for an in-depth bioseparations text. It covers all the current techniques used by researchers and industrial professionals and is an excellent source for students and scientists.
Multidisciplinary resource for graduate studies and the biotechnology industry Knowledge of the genetic basis of biological functioning continues to grow at an astronomical rate, as do the challenges and opportunities of applying this information to the production of therapeutic compounds, specialty biochemicals, functional food ingredients, environmentally friendly biocatalysts, and new bioproducts from renewable resources. While genetic engineering of living organisms transforms the science of genomics into treatments for cancer, diabetes, and heart disease, or products for industry and agriculture, the science and technology of bioseparations are the keys to delivering these products in a purified form suitable for use by people. The methods, theory, and materials that reduce the science of bioseparations to practice, whether in the laboratory or the plant, are the subjects of Bioseparations Engineering. Examples address purification of biomolecules ranging from recombinant proteins to gene therapy products, with footnotes detailing economics of the products. Mechanistic analysis and engineering design methods are given for: * Isocratic and gradient chromatography * Sedimentation, centrifugation, and filtration * Membrane systems * Precipitation and crystallization Topics addressed within this framework are: stationary phase selection; separations development; modeling of ion exchange, size exclusion, reversed phase, hydrophobic interaction, and affinity chromatography; the impact of regulatory issues on chromatography process design; organization of separation strategies into logical sequences of purification steps; and bridges between molecular biology, combinatorial methods, and separations science. A result of teaching and developing the subject matter over ten years, Bioseparations Engineering is an ideal text for graduate students, as well as a timely desk book for process engineers, process scientists, researchers, and research associates in the pharmaceutical, food, and life sciences industries.
It is generally recognized that the commercial success of biotechnology products is highly dependent on the successful development and application of high-powered separation and purification methods. In this practical and authoritative handbook, the separation of proteins, nucleic acids, and oligonucleotides from biological matrices is covered from analytical to process scales. Also included in a chapter on the separation of monoclonal antibodies, which have found numerous uses as therapeutic and diagnostic agents. Analytical techniques include an interesting montage of chromatographic methods, capillary electrophoresis, isoelectric focusing, and mass spectrometry. Among separation and purification methods, liquid-liquid distribution, displacement chromatography, expanded bed adsorption, membrane chromatography, and simulated moving bed chromatography are covered at length. Regulatory and economic considerations are addressed, as are plant and process equipment and engineering process control. A chapter on future developments highlights the application of DNA chip arrays as well as evolving methodologies for a large number of drugs that are under development for treatment of cancer, AIDS, rheumatoid arthritis, and Alzheimer's disease. Handbook of Bioseparations serves as an essential reference and guidebook for separation scientists working in the pharmaceutical and biotechnology industries, academia, and government laboratories.Key Features* Covers bioseparations of proteins, nucleic acids, and monoclonal antibodies* Encompasses both analytical and process-scale methods* Elucidates the importance of engineering process control* Details selection of plant and process equipment* Addresses economic considerations* Discusses future developments
Bioseparation Engineering is meant for undergraduate and the postgraduate student community pursuing careers in Life Sciences. It concentrates on the more recent methods and techniques for separating components and products of the biotechnology industry. Each chapter deals with a specific type or area of application and includes information on the basic principles, industrial equipment available, commercial applications and an overview of current research and development. Main objective of the book is to provide in-depth knowledge of the subject in an interesting and paramount simple way