Download Free Indoor Positioning Techniques And Approaches For Wi Fi Based Systems Book in PDF and EPUB Free Download. You can read online Indoor Positioning Techniques And Approaches For Wi Fi Based Systems and write the review.

"The rapid expansion of smartphones’ market coupled with the advances in mobile computing technology has opened up doors for new mobile services and applications. Quite a few of these services require the knowledge of the exact location of their handsets. Although, existing global positioning systems (GPS) perform best in outdoor environments, they have poor performance indoors. This has initiated the need for a new generation of positioning systems. In this thesis, we focus on wireless local area networks (WLAN)-based indoor positioning systems to act as GPS counterpart indoors. More specifically, we study two received signal strength (RSS)-based positioning techniques, fingerprinting and propagation models. We shed light on the advantages of each technique and propose different methods to counteract their shortcomings. Namely, we propose a hybrid solution of clustering and fast search techniques to reduce the computational requirements of fingerprinting. In addition, we propose a dimensionality reduction technique to restrict the location fingerprints to signal strength values received from only informative Access Points (APs), hence to further reduce fingerprinting complexity. For this purpose, we implement a modified fast orthogonal search method to choose the most informative APs from the set of all hearable APs in the region. Finally, we propose an indoor localization system that integrates the RSS correction methods to enhance the positioning accuracy of propagation models. This proposed system aims to achieve accurate modeling of signals’ propagation inside buildings without the need for expensive site surveys required for fingerprinting. Our experiments were conducted inside the engineering building at our university, using real RSS data. The obtained results show that the aforementioned first two proposed methods enhance fingerprinting techniques by reducing their computational complexity, while the third enhances the accuracy of propagation models."--Abstract.
Provides technical and scientific descriptions of potential approaches used to achieve indoor positioning, ranging from sensor networks to more advanced radio-based systems This book presents a large technical overview of various approaches to achieve indoor positioning. These approaches cover those based on sensors, cameras, satellites, and other radio-based methods. The book also discusses the simplification of certain implementations, describing ways for the reader to design solutions that respect specifications and follow established techniques. Descriptions of the main techniques used for positioning, including angle measurement, distance measurements, Doppler measurements, and inertial measurements are also given. Indoor Positioning: Technologies and Performance starts with overviews of the first age of navigation, the link between time and space, the radio age, the first terrestrial positioning systems, and the era of artificial satellites. It then introduces readers to the subject of indoor positioning, as well as positioning techniques and their associated difficulties. Proximity technologies like bar codes, image recognition, Near Field Communication (NFC), and QR codes are covered—as are room restricted and building range technologies. The book examines wide area indoor positioning as well as world wide indoor technologies like High-Sensitivity and Assisted GNSS, and covers maps and mapping. It closes with the author's vision of the future in which the practice of indoor positioning is perfected across all technologies. This text: Explores aspects of indoor positioning from both theoretical and practical points of view Describes advantages and drawbacks of various approaches to positioning Provides examples of design solutions that respect specifications of tested techniques Covers infra-red sensors, lasers, Lidar, RFID, UWB, Bluetooth, Image SLAM, LiFi, WiFi, indoor GNSS, and more Indoor Positioning is an ideal guide for technical engineers, industrial and application developers, and students studying wireless communications and signal processing.
Provides technical and scientific descriptions of potential approaches used to achieve indoor positioning, ranging from sensor networks to more advanced radio-based systems This book presents a large technical overview of various approaches to achieve indoor positioning. These approaches cover those based on sensors, cameras, satellites, and other radio-based methods. The book also discusses the simplification of certain implementations, describing ways for the reader to design solutions that respect specifications and follow established techniques. Descriptions of the main techniques used for positioning, including angle measurement, distance measurements, Doppler measurements, and inertial measurements are also given. Indoor Positioning: Technologies and Performance starts with overviews of the first age of navigation, the link between time and space, the radio age, the first terrestrial positioning systems, and the era of artificial satellites. It then introduces readers to the subject of indoor positioning, as well as positioning techniques and their associated difficulties. Proximity technologies like bar codes, image recognition, Near Field Communication (NFC), and QR codes are covered—as are room restricted and building range technologies. The book examines wide area indoor positioning as well as world wide indoor technologies like High-Sensitivity and Assisted GNSS, and covers maps and mapping. It closes with the author's vision of the future in which the practice of indoor positioning is perfected across all technologies. This text: Explores aspects of indoor positioning from both theoretical and practical points of view Describes advantages and drawbacks of various approaches to positioning Provides examples of design solutions that respect specifications of tested techniques Covers infra-red sensors, lasers, Lidar, RFID, UWB, Bluetooth, Image SLAM, LiFi, WiFi, indoor GNSS, and more Indoor Positioning is an ideal guide for technical engineers, industrial and application developers, and students studying wireless communications and signal processing.
This book provides a comprehensive and in-depth understanding of wireless indoor localization for ubiquitous applications. The past decade has witnessed a flourishing of WiFi-based indoor localization, which has become one of the most popular localization solutions and has attracted considerable attention from both the academic and industrial communities. Specifically focusing on WiFi fingerprint based localization via crowdsourcing, the book follows a top-down approach and explores the three most important aspects of wireless indoor localization: deployment, maintenance, and service accuracy. After extensively reviewing the state-of-the-art literature, it highlights the latest advances in crowdsourcing-enabled WiFi localization. It elaborated the ideas, methods and systems for implementing the crowdsourcing approach for fingerprint-based localization. By tackling the problems such as: deployment costs of fingerprint database construction, maintenance overhead of fingerprint database updating, floor plan generation, and location errors, the book offers a valuable reference guide for technicians and practitioners in the field of location-based services. As the first of its kind, introducing readers to WiFi-based localization from a crowdsourcing perspective, it will greatly benefit and appeal to scientists and researchers in mobile and ubiquitous computing and related areas.
"Location based services are becoming an important part of life. Wide adoption of GPS in mobile devices combined with cellular networks has practically solved the problem of outdoor localization needs. The problem of locating an indoor user has being studied only recently. Much research contributed to the innovative concept of an indoor positioning system. By analyzing different technologies and algorithms, this thesis concluded that, considering a trade-off between accuracy and cost, a Wi-Fi based Fingerprint method is proved to be the most promising approach to determine the location of a mobile device. However, the Fingerprint method works in two phases-an offline training phase (collection of Received Signal Strength signatures) and an online phase in which data from the first phase is used to determine the current position of a mobile user. The number of training points in a certain area has a direct impact on the accuracy of the system. As a result, the offline phase is a tedious and cumbersome process and the positioning systems are only as accurate as the offline training phase has been detailed. Moreover, the offline phase must be repeated every time a change in the environment occurs. To avoid these limitations, we focus on improving the accuracy of the indoor positioning system, without increasing the number of training points. This thesis presents a Wi-Fi based system for locating a user inside a building. The system is named WiFiPoz, which means Wi-Fi positioning system based on the zoning method. WiFiPoz has a novel approach to Fingerprint method that incorporates Propagation and zoning methods. Experimental results show that WiFiPoz is highly efficient both in accuracy and costs. Compared to traditional Fingerprint methods, with the optimization of the accuracy of the location estimation, WiFiPoz reduces the number of training points. This feature makes it possible to quickly adapt to changes in the environment. In order to explore another possible solution, this thesis also developed, implemented and tested an indoor positioning system named GIS (Geometric Information based positioning System), which is based on a model proposed by another researcher. Several experiments were run in the offline phase and results were compared between the traditional Fingerprint method, GIS and proposed WiFiPoz. We concluded that WiFiPoz is a more efficient and simple way to increase the accuracy of the location determination with fewer training points"--Document.
In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for realtime processing and low energy consumption on a smartphone or robot.
Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods.
This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.
In the age of automation the ability to navigate persons and devices in indoor environments has become increasingly important for a rising number of applications. However, we are still far away from achieving cheap provision of global indoor positioning with an accuracy of 1 meter or better. With the emergence of global satellite positioning systems, the performance of outdoor positioning has become excellent, but many mass market applications require seamless positioning capabilities in all environments. Therefore indoor positioning has become a focus of research and development during the past decade. This book categorizes all sighted indoor positioning approaches into 13 distinct technologies and describes the measuring principles of each. Individual approaches are characterized and key performance parameters are quantified.
Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization