Download Free Individual Differences In Arithmetical Development Book in PDF and EPUB Free Download. You can read online Individual Differences In Arithmetical Development and write the review.

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Arithmetic is still hugely important in many aspects of modern life, but our personal attitudes to it differ greatly. Many people struggle with the basic principles of arithmetic, whilst others love it and feel confident in their arithmetical abilities. Why are there so many individual differences in people’s performance in, and feelings about, arithmetic? Individual Differences in Arithmetic explores the idea that there is no such thing as arithmetical ability, only arithmetical abilities. The book discusses several important components of arithmetic, from counting principles and procedures to arithmetical estimation, alongside emotional and cognitive components of arithmetical performance. This edition has been extensively revised to include the latest research, including recent cross-cultural and cross-linguistic research, the development of new interventions for children with difficulties and studies of early foundations of mathematical abilities. Drawing on developmental, educational, cognitive and neuropsychological studies, this book will be essential reading for all researchers of mathematical cognition. It will also be of interest to educators and other professionals working within individuals with arithmetic deficits.
This volume focuses on two related questions that are central to both the psychology of mathematical thinking and learning and to the improvement of mathematics education: What is the nature of arithmetic expertise? How can instruction best promote it? Contributors from a variety of specialities, including cognitive, developmental, educational, and neurological psychology; mathematics education; and special education offer theoretical perspectives and much needed empirical evidence about these issues. As reported in this volume, both theory and research indicate that the nature of arithmetic expertise and how to best promote it are far more complex than conventional wisdom and many scholars, past and present, have suggested. The results of psychological, educational, and clinical studies using a wide range of arithmetic tasks and populations (including "normally" and atypically developing children, non-injured and brain-injured adults, and savants) all point to the same conclusion: The heart of arithmetic fluency, in general, and the flexible and creative use of strategies, in particular, is what is termed "adaptive expertise" (meaningful or conceptually based knowledge). The construction of adaptive expertise in mathematics is, for the first time, examined across various arithmetic topics and age groups. This book will be an invaluable resource for researchers and graduate students interested in mathematical cognition and learning (including mathematics educators, developmental and educational psychologists, and neuropsychologists), educators (including teachers, curriculum supervisors, and school administrators), and others interested in improving arithmetic instruction (including officials in national and local education departments, the media, and parents).
Development of Mathematical Cognition: Neural Substrates and Genetic Influences reviews advances in extant imaging modalities and the application of brain stimulation techniques for improving mathematical learning. It goes on to explore the role genetics and environmental influences have in the development of math abilities and disabilities. Focusing on the neural substrates and genetic factors associated with both the typical and atypical development of mathematical thinking and learning, this second volume in the Mathematical Cognition and Learning series integrates the latest in innovative measures and methodological advances from the top researchers in the field. - Provides details about new progress made in the study of neural correlates of numerical and arithmetic cognition - Addresses recent work in quantitative and molecular genetics - Works to improve instruction in numerical, arithmetical, and algebraic thinking and learning - Informs policy to help increase the level of mathematical proficiency among the general public
Living at the beginning of the 21st century requires being numerate, because numerical abilities are not only essential for life prospects of individuals but also for economic interests of post-industrial knowledge societies. Thus, numerical development is at the core of both individual as well as societal interests. There is the notion that we are already born with a very basic ability to deal with small numerosities. Yet, this often called “number sense” seems to be very restricted, approximate, and driven by perceptual constraints. During our numerical development in formal (e.g., school) but also informal contexts (e.g., family, street) we acquire culturally developed abstract symbol systems to represent exact numerosities – in particular number words and Arabic digits – refining our numerical capabilities. In recent years, numerical development has gained increasing research interest documented in a growing number of behavioural, neuro-scientific, educational, cross-cultural, and neuropsychological studies addressing this issue. Additionally, our understanding of how numerical competencies develop has also benefitted considerably from the advent of different neuro-imaging techniques allowing for an evaluation of developmental changes in the human brain. In sum, we are now starting to put together a more and more coherent picture of how numerical competencies develop and how this development is associated with neural changes as well. In the end, this knowledge might also lead to a better understanding of the reasons for atypical numerical development which often has grieve consequences for those who suffer from developmental dyscalculia or mathematics learning disabilities. Therefore, this Research Topic deals with all aspects of numerical development: findings from behavioural performance to underlying neural substrates, from cross-sectional to longitudinal evaluations, from healthy to clinical populations. To this end, we included empirical contributions using different experimental methodologies, but also theoretical contributions, review articles, or opinion papers.
Cutting edge research from a diverse range of viewpoints Central section dedicated to the arithmetical development of memory.
How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.
The Mathematical Brain Across the Lifespan is the latest volume in the Progress in Brain Research series that focuses on new trends and developments. This established international series examines major areas of basic and clinical research within the neurosciences, as well as popular and emerging subfields. Provides a comprehensive review of the most recent progress in the mathematical brain across the lifespan Explores new trends and developments in the field Enhances the literature of neuroscience by further expanding the established, ongoing international series Progress in Brain Research
​​This volume gathers together twenty major chapters that tackle a variety of issues associated with equity in mathematics education along the dimensions of gender, culture, curriculum diversity, and matters of a biological nature. The pursuit of equity in mathematics education is an important concern in the history of the present. Since there is no doubt about the significant role of mathematics in almost every aspect of life, it means that all individuals regardless of sex, in any age range, and in whatever context need to be provided with an opportunity to become mathematically able. The publication of this Springer volume on equity in mathematics education is situated at a time when there is strong and sustained research evidence indicating the persistence of an equity gap in mathematics, which has now enabled the mathematics education community to engage in a discourse of access for all. The research studies that are reported and discussed in the volume have been drawn from an international group of distinguished scholars whose impressive, forward-looking, and thought-provoking perspectives on relevant issues incite, broaden, and expand complicated conversations on how we might effectively achieve equity in mathematics education at the local, institutional, and systemic levels. Further, the up-to-date research knowledge in the field that is reflected in this volume provides conceptual and practical outlines for mechanisms of change, including models, examples, and usable theories that can inform the development of powerful equitable practices and the mobilization of meaningful equity interventions in different contexts of mathematics education.​