Download Free In Situ Hybridization In Light Microscopy Book in PDF and EPUB Free Download. You can read online In Situ Hybridization In Light Microscopy and write the review.

In Situ hybridization allows the visualization of specific DNA/RNA sequences in individual cells in tissue sections, single cells, or chromosome preparations, and is an especially important method for studying DNA and RNA in heterogeneous cell populations. This book delves into in situ hybridization methods through the use of light microscopy used
Fluorescence in situ hybridization (FISH) has been developed as a powerful technology which allows direct visualisation or localisation of genomic alterations. The technique has been adopted to a range of applications in both medicine, especially in the areas of diagnostic cytogenetics, and biology. Topics described in this manual include: FISH on native human tissues, such as blood, bone marrow, epithelial cells, hair root cells, amniotic fluid cells, human sperm cells; FISH on archival human tissues, such as formalin fixed and paraffin embedded tissue sections, cryofixed tissue; simultaneous detection of apoptosis and xpression of apoptosis-related genes; comparative genomic ybridization; and special FISH techniques.
This book is a unique source of information on the present state of the exciting field of molecular cytogenetics and how it can be applied in research and diagnostics. The basic techniques of fluorescence in situ hybridization and primed in situ hybridization (PRINS) are outlined, the multiple approaches and probe sets that are now available for these techniques are described, and applications of them are presented in 36 chapters by authors from ten different countries around the world. The book not only provides the reader with basic and background knowledge on the topic, but also gives detailed protocols that show how molecular cytogenetics is currently performed by specialists in this field. The FISH Application Guide initially provides an overview of the (historical) development of molecular cytogenetics, its basic procedures, the equipment required, and probe generation. The book then describes tips and tricks for making different tissues available for molecular cytogenetic studies. These are followed by chapters on various multicolor FISH probe sets, their availability, and their pot- tial for use in combination with other approaches. The possible applications that are shown encompass the characterization of marker chromosomes, cryptic cytogenetic aberrations and epigenetic changes in humans by interphase and metaphase cyto- netics, studies of nuclear architecture, as well as the application of molecular cytogenetics to zoology, botany and microbiology.
In the era of precision medicine, physicians are increasingly in need of more definitive diagnostic, prognostic, and predictive information derived from small biopsy specimens such as cytology samples in order to guide effective patient care. Cytopathology is well poised to meet this challenge. Whilst the traditional cytomorphologic component of cytology practice is still valid, enormous advances have been made in the field of cytopathology thanks to transformative technology and innovative individuals that have augmented the cytologists' ability to meet the demands of modern medicine. The purpose of this book is to describe, illustrate, and review many of the most recent developments regarding modern techniques employed in cytopathology. This latest monograph is intended for all cytologists including cytopathologists, cytotechnologists, cytology lab assistants, trainees, research scientists, and anyone who is interested in the field of cytopathology. We have invited pioneering experts in their respective fields to author these chapters. This book is not only the culmination of their groundbreaking work and effort but also presents a critical review of the current literature. We have attempted to provide readers with an informative and comprehensive aid so that they may better appreciate how emerging technology has been applied to cytology. Each chapter in this book presents a stand-alone contemporary review of emerging topics in cytopathology. We hope that you will find this monograph thought-provoking and a valuable reference for your practice.
This volume contains a comprehensive compilation of chromogenic and fluorescent RNA in situ hybridization (ISH) technology in many of its various shades, forms, and applications. The book is organized into a number of parts and chapters focusing on the application of ISH methodologies to different animal species as used in Evolutionary Development (EvoDevo) and Biomedical research, and covering new developments in RNA visualization by fluorescent ISH (FISH). The described (F)ISH protocols employ effective strategies for signal enhancement and target amplification allowing for high signal intensities and drastically improved signal-to-noise ratios. Chromogenic and fluorescent ISH, as specified in the various chapters, are most essential for RNA expression profiling, applied to many fields of research including cellular, developmental, and evolutionary biology, neurobiology and neuropathology. Written for the popular Neuromethods series, chapters include the kind of detail and key implementation advice that ensures successful results in the laboratory. Essential and authoritative, In Situ Hybridization Methods provides detailed protocols for newcomers to ISH, and inspires researchers familiar with the technique to seek and find up-to-date methodology for new and specialized applications.
Chromosome biology has been brought to a golden age by phenomenal advanced in molecular genetics and techniques. This is true in the plant arena, and it is becoming increasingly true in animal studies, where chromosomes are more difficult to work with. With advanced knowledge of transformation, scientists can tell exactly where a new element enters a chromosome. Conversely, molecular biologists can make large mistakes if they do not understand the behavior of chromosomes. Written by internationally recognized experts in the field, this book is the most authoritative work on the subject to date. Students of genetics, crop science and plant breeding, entomology, animal science, and related fields will benefit from this comprehensive and practical textbook.
Advances in genomic and proteomic profiling of disease have transformed the field of molecular diagnostics, thus leading the way for a major revolution in clinical practice. While the range of tests for disease detection and staging is rapidly expanding, many physicians lack the knowledge required to determine which tests to order and how to interpret results. Molecular Diagnostics provides a complete guide to the use and interpretation of molecular testing in the clinical arena. No other available resource offers this emphasis, comprehensive scope, and practical utility in the clinical setting. - Serves as the definitivereference for molecular pathologists worldwide - Covers a variety of molecular techniques including next generation sequencing, tumor somatic cell genotyping, infectious and genetic disease tecting, and pharmacogenetics - Discusses in the detail issues concerning quality assurance, regulation, ethics, and future directions for the science
This manual contains selected material from Cells - a Laboratory Manual, as well as two chapters from Live Cell Imaging. It includes sections on microscopy, and on preparing and labelling specimens for microscopy.
Annotation Darby (human biology, RMIT U., Victoria, Australia) is joined by geneticists, molecular biologists, and pathologists from around the world to describe basic and advanced techniques for hybridization, for whole-mount embryo specimens and at the electron microscope level. Coverage includes protocols for detection of DNA fragmentation in apoptosis, localization of genes to particular chromosomes, and the use of DNA and RNA probes to detect expression in cells or tissue sections. For novice and experienced investigators who need proven and readily reproducible methods. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Brings a fresh point of view to the current state of correlative imaging and the future of the field This book provides contributions from international experts on correlative imaging, describing their vision of future developments in the field based on where it is today. Starting with a brief historical overview of how the field evolved, it presents the latest developments in microscopy that facilitate the correlative workflow. It also discusses the need for an ideal correlative probe, applications in proteomic and elemental analysis, interpretation methods, and how correlative imaging can incorporate force microscopy, soft x-ray tomography, and volume electron microscopy techniques. Work on placing individual molecules within cells is also featured. Correlative Imaging: Focusing on the Future offers in-depth chapters on: correlative imaging from an LM perspective; the importance of sample processing for correlative imaging; correlative light and volume EM; correlation with scanning probe microscopies; and integrated microscopy. It looks at: cryo-correlative microscopy; correlative cryo soft X-ray imaging; and array tomography. Hydrated-state correlative imaging in vacuo, correlating data from different imaging modalities, and big data in correlative imaging are also considered. Brings a fresh view to one of the hottest topics within the imaging community: the correlative imaging field Discusses current research and offers expert thoughts on the field’s future developments Presented by internationally-recognized editors and contributors with extensive experience in research and applications Of interest to scientists working in the fields of imaging, structural biology, cell biology, developmental biology, neurobiology, cancer biology, infection and immunity, biomaterials and biomedicine Part of the Wiley–Royal Microscopical Society series Correlative Imaging: Focusing on the Future will appeal to those working in the expanding field of the biosciences, correlative microscopy and related microscopic areas. It will also benefit graduate students working in microscopy, as well as anyone working in the microscopy imaging field in biomedical research.