Download Free In Memoriam Stephen Van Rensse Book in PDF and EPUB Free Download. You can read online In Memoriam Stephen Van Rensse and write the review.

In distributed computing systems -- the software for networks -- a system may have a huge number of components resulting in a high level of complexity. That and issues such as fault-tolerance, security, system management, and exploitation of concurrency make the development of complex distributed systems a challenge.
Holography - Basic Principles and Contemporary Applications is a collection of fifteen chapters, describing the basic principles of holography and some recent innovative developments in the field. The book is divided into three sections. The first, Understanding Holography, presents the principles of hologram recording illustrated with practical examples. A comprehensive review of diffraction in volume gratings and holograms is also presented. The second section, Contemporary Holographic Applications, is concerned with advanced applications of holography including sensors, holographic gratings, white-light viewable holographic stereograms. The third section of the book Digital Holography is devoted to digital hologram coding and digital holographic microscopy.
Over the past two decades, there has been a huge amount of innovation in both the principles and practice of operating systems Over the same period, the core ideas in a modern operating system - protection, concurrency, virtualization, resource allocation, and reliable storage - have become widely applied throughout computer science. Whether you get a job at Facebook, Google, Microsoft, or any other leading-edge technology company, it is impossible to build resilient, secure, and flexible computer systems without the ability to apply operating systems concepts in a variety of settings. This book examines the both the principles and practice of modern operating systems, taking important, high-level concepts all the way down to the level of working code. Because operating systems concepts are among the most difficult in computer science, this top to bottom approach is the only way to really understand and master this important material.
Publishes papers reporting on research and development in optical science and engineering and the practical applications of known optical science, engineering, and technology.
When it comes to choosing, using, and maintaining a database, understanding its internals is essential. But with so many distributed databases and tools available today, it’s often difficult to understand what each one offers and how they differ. With this practical guide, Alex Petrov guides developers through the concepts behind modern database and storage engine internals. Throughout the book, you’ll explore relevant material gleaned from numerous books, papers, blog posts, and the source code of several open source databases. These resources are listed at the end of parts one and two. You’ll discover that the most significant distinctions among many modern databases reside in subsystems that determine how storage is organized and how data is distributed. This book examines: Storage engines: Explore storage classification and taxonomy, and dive into B-Tree-based and immutable Log Structured storage engines, with differences and use-cases for each Storage building blocks: Learn how database files are organized to build efficient storage, using auxiliary data structures such as Page Cache, Buffer Pool and Write-Ahead Log Distributed systems: Learn step-by-step how nodes and processes connect and build complex communication patterns Database clusters: Which consistency models are commonly used by modern databases and how distributed storage systems achieve consistency
Now in its third edition, Optical Document Security has transformed from a compilation of related topics on the subject, to a comprehensive and cohesive treatment of all aspects of optical document security written by a leading expert with decades of experience. This completely revised and updated edition brings you to the cutting-edge of this field, with new coverage of paper-based security, printed security, security evaluation and features, and biometrics.
This second edition of Distributed Systems, Principles & Paradigms, covers the principles, advanced concepts, and technologies of distributed systems in detail, including: communication, replication, fault tolerance, and security. Intended for use in a senior/graduate level distributed systems course or by professionals, this text systematically shows how distributed systems are designed and implemented in real systems.
Documents of high value, such as passports, tickets and banknotes, facilitate means for authentication. Authentication processes aim at mitigating counterfeit “passable products”. The arsenal of “security features” in the business is abundant but an effective and reliable counterfeit mitigating system need an architectural approach rather than either relying on one feature only, or vaguely motivated aggregated security features. Optically variable device (OVD) is a concept in the industry, including costefficient and unique authentication functionality. OVD based features may serve as the main counterfeit mitigating functionality, as in banknotes. For higher value documents, such as passports, security architectural design may include multimodal (combined) features in which OVD is one characterizing and necessary aspect. Thereby a successful counterfeit need not only to simulate (“hack”) electronic based security features, such as radio frequency based identifier combined with public key infrastructure based cryptography (PKI) but also simulate OVD functionality. Combined feature authentication, based e.g. on PKI and OVD that relies on principally different physics and hence technology competences is of especial interest. Well-architectured and implemented, such multimodal counterfeit mitigating systems are effective to the degree that producing passable products requiring more resources than potentially illegitimately gained by the counterfeiter. Irrespective of level of ambition and efforts spent on counterfeit mitigation, OVD remains critically important as a security concept. One feature of OVD is the possibility to include a human inspector in the authentication procedure. Including such “man-in-the-loop” reduces the risk of successful and unnoticed simulations of algorithms, such as PKI. One challenge of OVD is a lack of standards or even measurements characterizing the significant aspects influencing a human based inspection. This thesis introduces a system able to measure, characterize and visualize the significant aspects influencing a human based inspection of OVD features. The contribution includes the development of a multidimensional and high-dynamic range (HDR) color measurement system of spatial and angular resolution. The capturing of HDR images is particularly demanding for certain high contrast OVD features and require innovative algorithms to achieve the necessary high contrast sensitivity function of the imaging sensor. Representing the significant aspects influencing a human based inspection of OVD requires a considerable amount of data. The development of an appropriate information protocol is therefore of importance, to facilitate further analysis, data processing and visualization. The information protocol transforming the measurement data into characterizing information is a second significant achievement of the presented work in this thesis. To prove the applicability measurements, visualizations and statistically based analyses have been developed for a selection of previously unsolved problems, as defined by senior scientists and representatives of central banks. Characterization and measurements of the degree to which OVD deteriorate with circulation is one such problem. One particular benefit of the implemented suggested solution is the characterization and measurement aim at aspects influencing human based (“first line”) inspection. The principally difference in the problems treated indicates the generality of the system, which is a third significant project achievement. The system developed achieves the accuracy and precision including a resolution, dynamic range and contrast sensitivity function required for a technology independent standard protocol of “optical document security” OVDs. These abilities facilitate the definition and verification of program of requirements for the development of new security documents. Adding also the capability of interlinking first, second and third line inspection based characterizations may prove a particular valuable combination, which is a fourth significant project achievement. The information content (Entropy) of characterized OVDs and OVD production limitations in combination opens for OVD based novel applications of “physically unclonable functions” (PUF). This is of significance as it would generalize the established OVDs to facilitate multimodal verification, including PUF verification. The OVDs would thereby transform into a combined PUF first line inspection facilitating security feature.