Download Free Improving The Prediction Of Rna Secondary Structure And Automatic Alignment Of Rna Sequences Book in PDF and EPUB Free Download. You can read online Improving The Prediction Of Rna Secondary Structure And Automatic Alignment Of Rna Sequences and write the review.

With the dramatic increase in RNA 3D structure determination in recent years, we now know that RNA molecules are highly structured. Moreover, knowledge of RNA 3D structures has proven crucial for understanding in atomic detail how they carry out their biological functions. Because of the huge number of potentially important RNA molecules in biology, many more than can be studied experimentally, we need theoretical approaches for predicting 3D structures on the basis of sequences alone. This volume provides a comprehensive overview of current progress in the field by leading practitioners employing a variety of methods to model RNA 3D structures by homology, by fragment assembly, and by de novo energy and knowledge-based approaches.
The existence of genes for RNA molecules not coding for proteins (ncRNAs) has been recognized since the 1950's, but until recently, aside from the critically important ribosomal and transfer RNA genes, most focus has been on protein coding genes. However, a long series of striking discoveries, from RNA's ability to carry out catalytic function, to discovery of riboswitches, microRNAs and other ribo-regulators performing critical tasks in essentially all living organisms, has created a burgeoning interest in this primordial component of the biosphere. However, the structural characteristics and evolutionary constraints on RNA molecules are very different from those of proteins, necessitating development of a completely new suite of informatic tools to address these challenges. In RNA Sequence, Structure, Function: Computational and Bioinformatic Methods, expert researchers in the field describe a substantial and relevant fraction of these methodologies from both practical and computational/algorithmic perspectives. Focusing on both of these directions addresses both the biologist interested in knowing more about RNA bioinformatics as well as the bioinformaticist interested in more detailed aspects of the algorithms. Written in the highly successful Methods in Molecular Biology series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results. Thorough and intuitive, RNA Sequence, Structure, Function: Computational and Bioinformatic Methods aids scientists in continuing to study key methods and principles of RNA bioinformatics.
A comprehensive overview of high-performance pattern recognition techniques and approaches to Computational Molecular Biology This book surveys the developments of techniques and approaches on pattern recognition related to Computational Molecular Biology. Providing a broad coverage of the field, the authors cover fundamental and technical information on these techniques and approaches, as well as discussing their related problems. The text consists of twenty nine chapters, organized into seven parts: Pattern Recognition in Sequences, Pattern Recognition in Secondary Structures, Pattern Recognition in Tertiary Structures, Pattern Recognition in Quaternary Structures, Pattern Recognition in Microarrays, Pattern Recognition in Phylogenetic Trees, and Pattern Recognition in Biological Networks. Surveys the development of techniques and approaches on pattern recognition in biomolecular data Discusses pattern recognition in primary, secondary, tertiary and quaternary structures, as well as microarrays, phylogenetic trees and biological networks Includes case studies and examples to further illustrate the concepts discussed in the book Pattern Recognition in Computational Molecular Biology: Techniques and Approaches is a reference for practitioners and professional researches in Computer Science, Life Science, and Mathematics. This book also serves as a supplementary reading for graduate students and young researches interested in Computational Molecular Biology.
The large potential of RNA sequencing and other "omics" techniques has contributed to the production of a huge amount of data pursuing to answer many different questions that surround the science's great unknowns. This book presents an overview about powerful and cost-efficient methods for a comprehensive analysis of RNA-Seq data, introducing and revising advanced concepts in data analysis using the most current algorithms. A holistic view about the entire context where transcriptome is inserted is also discussed here encompassing biological areas with remarkable technological advances in the study of systems biology, from microorganisms to precision medicine.
From basic performing of sequence alignment through a proficiency at understanding how most industry-standard alignment algorithms achieve their results, Multiple Sequence Alignment Methods describes numerous algorithms and their nuances in chapters written by the experts who developed these algorithms. The various multiple sequence alignment algorithms presented in this handbook give a flavor of the broad range of choices available for multiple sequence alignment generation, and their diversity is a clear reflection of the complexity of the multiple sequence alignment problem and the amount of information that can be obtained from multiple sequence alignments. Each of these chapters not only describes the algorithm it covers but also presents instructions and tips on using their implementation, as is fitting with its inclusion in the highly successful Methods in Molecular Biology series. Authoritative and practical, Multiple Sequence Alignment Methods provides a readily available resource which will allow practitioners to experiment with different algorithms and find the particular algorithm that is of most use in their application.
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.
Studies in Computational Linguistics presents authoritative texts from an international team of leading computational linguists. The books range from the senior undergraduate textbook to the research level monograph and provide a showcase for a broad range of recent developments in the field. The series should be interesting reading for researchers and students alike involved at this interface of linguistics and computing.
This thorough volume explores predicting one-dimensional functional properties, functional sites in particular, from protein sequences, an area which is getting more and more attention. Beginning with secondary structure prediction based on sequence only, the book continues by exploring secondary structure prediction based on evolution information, prediction of solvent accessible surface areas and backbone torsion angles, model building, global structural properties, functional properties, as well as visualizing interior and protruding regions in proteins. Written for the highly successful Methods in Molecular Biology series, the chapters include the kind of detail and implementation advice to ensure success in the laboratory. Practical and authoritative, Prediction of Protein Secondary Structure serves as a vital guide to numerous state-of-the-art techniques that are useful for computational and experimental biologists.
This book develops a new approach called parameter advising for finding a parameter setting for a sequence aligner that yields a quality alignment of a given set of input sequences. In this framework, a parameter advisor is a procedure that automatically chooses a parameter setting for the input, and has two main ingredients: (a) the set of parameter choices considered by the advisor, and (b) an estimator of alignment accuracy used to rank alignments produced by the aligner. On coupling a parameter advisor with an aligner, once the advisor is trained in a learning phase, the user simply inputs sequences to align, and receives an output alignment from the aligner, where the advisor has automatically selected the parameter setting. The chapters first lay out the foundations of parameter advising, and then cover applications and extensions of advising. The content • examines formulations of parameter advising and their computational complexity, • develops methods for learning good accuracy estimators, • presents approximation algorithms for finding good sets of parameter choices, and • assesses software implementations of advising that perform well on real biological data. Also explored are applications of parameter advising to • adaptive local realignment, where advising is performed on local regions of the sequences to automatically adapt to varying mutation rates, and • ensemble alignment, where advising is applied to an ensemble of aligners to effectively yield a new aligner of higher quality than the individual aligners in the ensemble. The book concludes by offering future directions in advising research.
The purpose of this edited book is to bring together the ideas and findings of data mining researchers and bioinformaticians by discussing cutting-edge research topics such as, gene expressions, protein/RNA structure prediction, phylogenetics, sequence and structural motifs, genomics and proteomics, gene findings, drug design, RNAi and microRNA analysis, text mining in bioinformatics, modelling of biochemical pathways, biomedical ontologies, system biology and pathways, and biological database management.