Download Free Improving The Characterization Program For Contact Handled Transuranic Waste Bound For The Waste Isolation Pilot Plant Book in PDF and EPUB Free Download. You can read online Improving The Characterization Program For Contact Handled Transuranic Waste Bound For The Waste Isolation Pilot Plant and write the review.

As operational experience is gained in the disposal of transuranic waste from nuclear weapons facilities at the Waste Isolation Pilot Plant in New Mexico, the Department of Energy (DOE) has opportunities to change how it "characterizes" waste to confirm that it is appropriate for shipment to and disposal at the underground repository. The waste shipped to the facility includes gloves, rags, tools, and other debris or dried sludge that has been contaminated by radioactive elements, including plutonium, during production or cleanup activities in the DOE weapons complex. However, before the DOE seeks regulatory approval for changes to its characterization program, the agency should conduct and publish a systematic and quantitative assessment to show that the proposed changes would not affect the protection of workers, the public, or the environment, according to the committee. The assessment should take into account technical factors, societal and regulatory impacts, and the time and effort required to make the changes.
The Department of Energy's Office of Environmental Management (EM) directs the massive cleanup of more than 100 sites that were involved in the production of nuclear weapons materials during the Manhattan Project and the Cold War. This report offers suggestions for more effectively characterizing and treating the orphan and special-case wastes that are part of EM's accelerated cleanup program. It identifies technical opportunities for EM to improve the program that will save time and money without compromising health and safety. The opportunities identified include: making more effective use of existing facilities and capabilities for waste characterization, treatment, or disposal; eliminating self-imposed requirements that have no clear technical or safety basis; and investing in new technologies to improve existing treatment and characterization capabilities. For example, the report suggests that EM work with DOE classification officers to declassify, to the extent possible, classified materials declared as wastes. The report also suggests a new approach for treating the wastes that EM will leave in place after cleanup.
The Department of Energy's Office of Environmental Management's (EM) mission is the safe cleanup of sites associated with the government-led development of nuclear weapons and nuclear energy. While many of these legacy sites have completed cleanup, the largest and most complex sites have not been fully remediated. The cleanup of these sites is proceeding under legally enforceable agreements with timelines for hundreds of milestones. EM is reviewing alternative approaches to increase effectiveness and improve cost efficiencies of its cleanup activities, especially for sites that will have residual contamination when active cleanup is complete. This report is the summary of two workshops convened in October 2013 and January 2014 on best practices for risk-informed remedy selection, closure, and post-closure control of radioactive and chemically contaminated sites that present significant difficulty for remediation to unrestricted release. The workshop series aimed to explore best practices that promote effective, risk-informed decision making and future opportunities to improve remediation approaches and practices.In the Workshop #1 section of Best Practices for Risk-Informed Decision Making Regarding Contaminated Sites, the report examines holistic approaches for remediating sites with multiple contaminant sources and post-closure uses, and approaches for incorporating a sustainability framework into decision making regarding site remediation, closure, and post-closure control. In Workshop #2, the report focuses on post-closure controls, assessment of long-term performance of site remedies, and best practices for risk-based remediation decisions.
The Department of Energy's Office of Environmental Management (DOE-EM) is responsible for cleaning up radioactive waste and environmental contamination resulting from five decades of nuclear weapons production and testing. A major focus of this program involves the retrieval, processing, and immobilization of waste into stable, solid waste forms for disposal. Waste Forms Technology and Performance, a report requested by DOE-EM, examines requirements for waste form technology and performance in the cleanup program. The report provides information to DOE-EM to support improvements in methods for processing waste and selecting and fabricating waste forms. Waste Forms Technology and Performance places particular emphasis on processing technologies for high-level radioactive waste, DOE's most expensive and arguably most difficult cleanup challenge. The report's key messages are presented in ten findings and one recommendation.
The Waste Isolation Pilot Plant (WIPP) is a deep underground mined facility for the disposal of transuranic waste resulting from the nation's defense program. Transuranic waste is defined as waste contaminated with transuranic radionuclides with half-life greater than 20 years and activity greater than 100 nanocuries per gram. The waste mainly consists of contaminated protective clothing, rags, old tools and equipment, pieces of dismantled buildings, chemical residues, and scrap materials. The total activity of the waste expected to be disposed at the WIPP is estimated to be approximately 7 million curies, including 12,900 kilograms of plutonium distributed throughout the waste in very dilute form. The WIPP is located near the community of Carlsbad, in southeastern New Mexico. The geological setting is a 600-meter thick, 250 million-year-old saltbed, the Salado Formation, lying 660 meters below the surface. The National Research Council (NRC) has been providing the U.S. Department of Energy (DOE) scientific and technical evaluations of the WIPP since 1978. The committee's task is twofold: (1) to identify technical issues that can be addressed to enhance confidence in the safe and long-term performance of the repository and (2) to identify opportunities for improving the National Transuranic (TRU) Program for waste management, especially with regard to the safety of workers and the public. This is the first full NRC report issued following the certification of the facility by the U.S. Environmental Protection Agency (EPA) on May 18, 1998. An interim report was issued by the committee in April 2000 and is reproduced in this report. The main findings and recommendations from the interim report have been incorporated into the body of this report. The overarching finding and recommendation of this report is that the activity that would best enhance confidence in the safe and long-term performance of the repository is to monitor critical performance parameters during the long pre-closure phase of repository operations (35 to possibly 100 years). Indeed, in the first 50 to 100 years the rates of important processes such as salt creep, brine inflow (if any), and microbial activity are predicted to be the highest and will be less significant later. The committee recommends that the results of the on-site monitoring program be used to improve the performance assessment for recertification purposes. These results will determine whether the need for a new performance assessment is warranted. For the National TRU Program, the committee finds that the DOE is implementing many of the recommendations of its interim report. It is important that the DOE continue its efforts to improve the packaging, characterization, and transportation of the transuranic waste.