Download Free Improving Reliability Assessment Of Offshore Structures Using Bayesian Methods Book in PDF and EPUB Free Download. You can read online Improving Reliability Assessment Of Offshore Structures Using Bayesian Methods and write the review.

Successfully estimate risk and reliability, and produce innovative, yet reliable designs using the approaches outlined in Offshore Structural Engineering: Reliability and Risk Assessment. A hands-on guide for practicing professionals, this book covers the reliability of offshore structures with an emphasis on the safety and reliability of offshore facilities during analysis, design, inspection, and planning. Since risk assessment and reliability estimates are often based on probability, the author utilizes concepts of probability and statistical analysis to address the risks and uncertainties involved in design. He explains the concepts with clear illustrations and tutorials, provides a chapter on probability theory, and covers various stages of the process that include data collection, analysis, design and construction, and commissioning. In addition, the author discusses advances in geometric structural forms for deep-water oil exploration, the rational treatment of uncertainties in structural engineering, and the safety and serviceability of civil engineering and other offshore structures. An invaluable guide to innovative and reliable structural design, this book: Defines the structural reliability theory Explains the reliability analysis of structures Examines the reliability of offshore structures Describes the probabilistic distribution for important loading variables Includes methods of reliability analysis Addresses risk assessment and more Offshore Structural Engineering: Reliability and Risk Assessment provides an in-depth analysis of risk analysis and assessment and highlights important aspects of offshore structural reliability. The book serves as a practical reference to engineers and students involved in naval architecture, ocean engineering, civil/structural, and petroleum engineering.
Increasing demand on improving the resiliency of modern structures and infrastructure requires ever more critical and complex designs. Therefore, the need for accurate and efficient approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes, and operational environments has increased significantly. Reliability-based techniques help develop more accurate initial guidance for robust design and help to identify the sources of significant uncertainty in structural systems. Reliability-Based Analysis and Design of Structures and Infrastructure presents an overview of the methods of classical reliability analysis and design most associated with structural reliability. It also introduces more modern methods and advancements, and emphasizes the most useful methods and techniques used in reliability and risk studies, while elaborating their practical applications and limitations rather than detailed derivations. Features: Provides a practical and comprehensive overview of reliability and risk analysis and design techniques. Introduces resilient and smart structures/infrastructure that will lead to more reliable and sustainable societies. Considers loss elimination, risk management and life-cycle asset management as related to infrastructure projects. Introduces probability theory, statistical methods, and reliability analysis methods. Reliability-Based Analysis and Design of Structures and Infrastructure is suitable for researchers and practicing engineers, as well as upper-level students taking related courses in structural reliability analysis and design.
Increasing demand on improving the resiliency of modern structures and infrastructure requires ever more critical and complex designs. Therefore, the need for accurate and efficient approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes, and operational environments has increased significantly. Reliability-based techniques help develop more accurate initial guidance for robust design and help to identify the sources of significant uncertainty in structural systems. Reliability-Based Analysis and Design of Structures and Infrastructure presents an overview of the methods of classical reliability analysis and design most associated with structural reliability. It also introduces more modern methods and advancements, and emphasizes the most useful methods and techniques used in reliability and risk studies, while elaborating their practical applications and limitations rather than detailed derivations. Features: Provides a practical and comprehensive overview of reliability and risk analysis and design techniques. Introduces resilient and smart structures/infrastructure that will lead to more reliable and sustainable societies. Considers loss elimination, risk management and life-cycle asset management as related to infrastructure projects. Introduces probability theory, statistical methods, and reliability analysis methods. Reliability-Based Analysis and Design of Structures and Infrastructure is suitable for researchers and practicing engineers, as well as upper-level students taking related courses in structural reliability analysis and design.
This book presents a bibliographical review of the use of Bayesian networks in reliability over the last decade. Bayesian network (BN) is considered to be one of the most powerful models in probabilistic knowledge representation and inference, and it is increasingly used in the field of reliability. After focusing on the engineering systems, the book subsequently discusses twelve important issues in the BN-based reliability methodologies, such as BN structure modeling, BN parameter modeling, BN inference, validation, and verification. As such, it is a valuable resource for researchers and practitioners in the field of reliability engineering.
The aim of this volume is to present to researchers and engineers working on problems concerned with the mechanics of solids and structures, the current state of the development and application to procedures for assessing the reliability of a system. Particular attention is paid to their use in the analysis of complex engineering systems. The topics covered reflect the need to integrate, within the overall methodology, statistical methods for dealing with uncertain parameters and random excitation with the development of a suitable safety indexes and design codes. The basic principles of reliability theory, together with current standard methodology, including a consideration of the operational, economic and legal aspects of reliability assurance, is reviewed, together with an introduction to new developments, such as the application of expert systems technology. Damage accumulation predictions, with applications in seismic engineering are also covered.
Safety and Reliability of Complex Engineered Systems contains the Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015, held 7-10 September 2015 in Zurich, Switzerland. It includes about 570 papers accepted for presentation at the conference. These contributions focus on theories and methods in the area of risk, safety and