Download Free Improved Overlay Tester For Fatigue Cracking Resistance Of Asphalt Mixtures Book in PDF and EPUB Free Download. You can read online Improved Overlay Tester For Fatigue Cracking Resistance Of Asphalt Mixtures and write the review.

The focus of many asphalt mixture design procedures over the past 10 years has led to the development of stiffer, drier mixtures. However, these mixes are more difficult to construct and are potentially more prone to reflective cracking. In this research the upgraded overlay tester is introduced and proposed as a simple performance test on reflective cracking. The overlay tester can be run on standard size samples, typically 6 in (150 mm) long by 3 in (75 mm) wide by 1.5 in (38 mm) high. These specimens can be prepared from either field cores or from Superpave Gyratory Compactor (SGC) molded specimens. The test is rapid and repeatable, and poor samples fail in minutes. It characterizes both crack initiation and crack propagation properties of asphalt mixtures. Based on repeatability study results, three replicates are recommended for the overlay tester. Sensitivity studies indicate that the overlay tester provides reasonable test results. Increasing asphalt content will significantly improve the reflective cracking resistance of asphalt mixtures. In a series of tests on Texas mixtures, it was determined that aggregate absorption has a major impact on the performance of specimens in the overlay tester. This topic has not received much attention recently but it obviously needs to be investigated. In the lab these highly absorptive aggregates did not severely impact the rutting performance but they had a major impact on cracking life. The effectiveness of the overlay tester was validated by five case studies in Texas. The overlay tester results all correlated well with the field performance. Furthermore, the overlay tester results have good correlations with beam fatigue test results and low temperature performance of asphalt mixtures in the field. A preliminary framework of asphalt overlay mixture designs and associated criteria have been proposed. Based on the framework, two examples of asphalt overlay mixture designs are presented in this report. This framework and the associated criteria are preliminary and they will need further refinement. Finally, a brand new overlay tester has been manufactured and delivered to TxDOTs central lab at the edar Park office. In addition, training for the operation and analysis has been provided.
Reflection cracking is a major concern when placing an overlay on a cracked pavement. The opening and closing of joints and/or cracks induced by daily temperature cycles is a major contributor to reflection cracking. This mechanism is currently being simulated in the laboratory at the Texas Transportation Institute (TTI) using a specially modified overlay-tester device. To evaluate the overlay tester concept laboratory results are presented on cores from four Texas projects, three of which performed very poorly and one which performed excellently. The asphalt mixture on US 175 in Dallas was placed on a cracked stabilized base and did not have a single reflection crack after 10 years in service, whereas the mixtures on two projects were badly cracked after only few months. The results clearly show that the upgraded TTI overlay tester can effectively differentiate between the reflection cracking resistance of different asphalt mixtures. It is also found that the reflection cracking resistance of asphalt mixture has a good correlation with the asphalt binder properties. In this report the upgraded TTI overlay tester is also used to quantify the benefits of modified asphalt binders. This benefit is demonstrated with a single mix where specimens were prepared with a variety of asphalt binders. The mix prepared with PG 64-22 plus 3 percent SBR latex demonstrated superior reflection cracking resistance while still maintaining adequate rutting resistance. It is proposed that the overlay tester is a practical device which can be incorporated into mixture design systems, to complement the current systems, which often focus solely on minimizing rutting potential. In many instances it is necessary to optimize both crack resistance and rutting potential to obtain adequate long-term pavement performance.
TRB's National Cooperative Highway Research Program (NCHRP) Report 752: Improved Mix Design, Evaluation, and Materials Management Practices for Hot Mix Asphalt with High Reclaimed Asphalt Pavement Content describes proposed revisions to the American Association of State Highway and Transportation Officials (AASHTO) R 35, Superpave Volumetric Design for Hot Mix Asphalt, and AASHTO M 323, Superpave Volumetric Mix Design, to accommodate the design of asphalt mixtures with high reclaimed asphalt pavement contents.
Inspired from the legacy of the previous four 3DFEM conferences held in Delft and Athens as well as the successful 2018 AM3P conference held in Doha, the 2020 AM3P conference continues the pavement mechanics theme including pavement models, experimental methods to estimate model parameters, and their implementation in predicting pavement performance. The AM3P conference is organized by the Standing International Advisory Committee (SIAC), at the time of this publication chaired by Professors Tom Scarpas, Eyad Masad, and Amit Bhasin. Advances in Materials and Pavement Performance Prediction II includes over 111 papers presented at the 2020 AM3P Conference. The technical topics covered include: - rigid pavements - pavement geotechnics - statistical and data tools in pavement engineering - pavement structures - asphalt mixtures - asphalt binders The book will be invaluable to academics and engineers involved or interested in pavement engineering, pavement models, experimental methods to estimate model parameters, and their implementation in predicting pavement performance.
This book presents the latest advances in research to analyze mechanical damage and its detection in multilayer systems. The contents are linked to the Rilem TC241 - MCD scientific activities and the proceedings of the 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016). MCD2016 was hosted by Ifsttar and took place in Nantes, France, on June 7-9, 2016. In their lifetime, pavements undergo degradation due to different mechanisms of which cracking is among the most important ones. The damage and the fracture behavior of all its material layers as well as interfaces must be understood. In that field, the research activities aims to develop a deeper fundamental understanding of the mechanisms responsible for cracking and debonding in asphalt concrete and composite (e.g. asphalt overlays placed on PCC or thin cement concrete overlay placed on asphalt layer) pavement systems.
This book is a collection of selected research papers from the 14th conference of the Transportation Planning and Implementation Methodologies for Developing Countries (TPMDC). It covers the broad area of transportation planning and policy, pavement design and engineering, emerging technologies in transportation, traffic management, operations, and safety, and sustainable mobility in transportation. The book aims to provide deeper understanding of the transportation issues, solutions, and learnings from the implemented solutions. This book will be of best interest for academicians, researchers, policy makers, and practitioners.
This volume contains the Proceedings of the RILEM TC 252-CMB International Symposium on the Chemo-Mechanical Characterization of Bituminous Materials. The Symposium was attended by researchers and practitioners from different fields presenting the latest findings in the chemical, mechanical, and microstructural characterization of bituminous materials. The book offers new and cutting edge papers on innovative techniques for the characterization of bituminous materials, gaining new insights into current issues such as effects of aging, moisture, and temperature.