Download Free Impact Of Engineered Nanomaterials In Genomics And Epigenomics Book in PDF and EPUB Free Download. You can read online Impact Of Engineered Nanomaterials In Genomics And Epigenomics and write the review.

Impact of Engineered Nanomaterials in Genomics and Epigenomics Overview of current research and technologies in nanomaterial science as applied to omics science at the single cell level Impact of Engineered Nanomaterials in Genomics and Epigenomics is a comprehensive and authoritative compilation of the genetic processes and instructions that specifically direct individual genes to turn on or off, focusing on the developing technologies of engineering nanomaterials and their role in cell engineering which have become important research tools for pharmaceutical, biological, medical, and toxicological studies. Combining state-of-the art information on the impact of engineered nanomaterials in genomics and epigenomics, from a range of internationally recognized investigators from around the world, this edited volume offers unique insights into the current trends and future directions of research in this scientific field. Impact of Engineered Nanomaterials in Genomics and Epigenomics includes detailed information on sample topics such as: Impact of engineered nanomaterials in genomics and epigenomics, including adverse impact on glucose energy metabolism Toxicogenomics, toxicoepigenomics, genotoxicity and epigenotoxicity, and mechanisms of toxicogenomics and toxicoepigenomics Adverse effects of engineered nanomaterials on human environment and metabolomics pathways leading to ecological toxicity Meta-analysis methods to identify genomic toxicity mechanisms of engineered nanomaterials and biological effects of engineered nanomaterial exposure Artificial intelligence and machine learning of single-cell transcriptomics of engineered nanoparticles and trends in plant nano-interaction to mitigate abiotic stresses This comprehensive work is a valuable and excellent source of authoritative and up-to-date information for advanced students and researchers, toxicologists, the drug industry, risk assessors and regulators in academia, industry, and government, as well as for clinical scientists working in hospital and clinical environments.
Environmental Nanotoxicology: Combatting the Minute Contaminants is a comprehensive guide to the rapidly evolving field of nanotoxicology and its implications for environmental health and safety. This book results from the collaborative efforts of leading experts and researchers from diverse disciplines, aiming to thoroughly understand the interactions between nanomaterials and the environment and their potential impacts on the delicate balance of our ecosystems. Nanotechnology has witnessed remarkable innovations leading to the development of nanomaterials with novel properties and applications across various industries. Alongside these innovations, concerns have arisen about the potential risks that nanomaterials may pose to the environment and living organisms. This book addresses these concerns by comprehensively exploring the field's key concepts, principles, and methodologies. It includes case studies and offers insights into developing appropriate regulatory frameworks and guidelines for the responsible use and disposal of nanomaterials. The book is a valuable resource for researchers and professionals working in nanotoxicology on the complex challenges posed by the intersection of nanomaterials and the environment. It is also an essential reference for students studying environmental science, toxicology, and nanotechnology. Addresses risk assessment and management in nanotoxicology; Explores the life cycle assessment of nanoparticles; Sheds light on emerging technologies and future directions in environmental nanotoxicology. .
Presents nanobiotechnology in drug delivery and disease management Featuring contributions from noted experts in the field, this book highlights recent advances in the nano-based drug delivery systems. It also covers the diagnosis and role of various nanomaterials in the management of infectious diseases and non-infectious disorders, such as cancers and other malignancies and their role in future medicine. Nanobiotechnology in Diagnosis, Drug Delivery and Treatment starts by introducing how nanotechnology has revolutionized drug delivery, diagnosis, and treatments of diseases. It then focuses on the role of various nanocomposites in diagnosis, drug delivery, and treatment of diseases like cancer, Alzheimer's disease, diabetes, and many others. Next, it discusses the application of a variety of nanomaterials in the diagnosis and management of gastrointestinal tract disorders. The book explains the concept of nanotheranostics in detail and its role in effective monitoring of drug response, targeted drug delivery, enhanced drug accumulation in the target tissues, sustained as well as triggered release of drugs, and reduction in adverse effects. Other chapters cover aptamer-incorporated nanoparticle systems; magnetic nanoparticles; theranostics and vaccines; toxicological concerns of nanomaterials used in nanomedicine; and more. Provides a concise overview of state-of-the-art nanomaterials and their application like drug delivery in infectious diseases and non-infectious disorders Highlights recent advances in the nano-based drug delivery systems and role of various nanomaterials Introduces nano-based sensors which detect various pathogens Covers the use of nanodevices in diagnostics and theranostics Nanobiotechnology in Diagnosis, Drug Delivery and Treatment is an ideal book for researchers and scientists working in various disciplines such as microbiology, biotechnology, nanotechnology, pharmaceutical biotechnology, pharmacology, pharmaceutics, and nanomedicine.
"The focus of this book is on human health risk assessment in the context of nanoparticle exposures. The book is authored by a highly-qualified team of subject matter experts, guided by editors that each has at least 25 years or more of laboratory investigative experience and publication in the fields covered in this book. The book is split into four sections. The first section is an introduction which includes an overview of the field. The second section details Health Effects of Nano -- Evidence from Animal Models and In Vitro Systems. The third covers Health Effects of Nano -- Evidence from Human Exposures, Environmental Assessments, and Disasters. The book concludes with topics on Emerging Applications, Ecotoxicology of Nanotechnology, Risk Assessment, and Regulation"--
An essential reference that discusses occupational exposure and the adverse health effects of engineered nanomaterials and highlights current and future biomedical applications of these nanomaterials in relation to nanosafety.
Focusing on the practical applications, this user-oriented guide presents current technologies and strategies for systems-level lipid analysis, going beyond basic research to concentrate on commercial uses of lipidomics in biomarker and diagnostic development, as well as within pharmaceutical drug discovery and development. The editor and authors have experience of the most recent analytical instruments and techniques, allowing them to provide here first-hand practical experience for newcomers to the field. The first half of the book covers current methodologies, ranging from global to targeted lipidomics and shotgun approaches, while the second part discusses the role of lipidomics in biomedical and pharmaceutical research, covering such diverse fields as inflammation, metabolic syndrome, cardiovascular and neurological disease. Both small and large-scale, high-throughput approaches are discussed, resulting in an invaluable source for academic and industrial research and development.
Omics Technologies and Bio-Engineering: Towards Improving Quality of Life, Volume 1 is a unique reference that brings together multiple perspectives on omics research, providing in-depth analysis and insights from an international team of authors. The book delivers pivotal information that will inform and improve medical and biological research by helping readers gain more direct access to analytic data, an increased understanding on data evaluation, and a comprehensive picture on how to use omics data in molecular biology, biotechnology and human health care. Covers various aspects of biotechnology and bio-engineering using omics technologies Focuses on the latest developments in the field, including biofuel technologies Provides key insights into omics approaches in personalized and precision medicine Provides a complete picture on how one can utilize omics data in molecular biology, biotechnology and human health care
Exposure to Engineered Nanomaterials in the Environment provide a new, holistic framework for testing and evaluating the potential benefits and risks of engineered nanomaterials (ENMs), including their potential socioeconomic impacts, ethical issues and consumers’ expectations and fears. The book covers nanomaterial presence in various environments, agroecosystems and other areas within the human sphere of actions. The book includes sections on (i) Chemical, physical and biological properties, (ii) Presence and diffusion of ENMs in human environments, agriculture, food and drug products, (iii) ENMs as a pillar in biological and medical research, and (iv) Social and regulatory issues emerging from years of application. The book is designed to increase awareness to key end-users and stakeholders, including food producers and processors, industry, representatives of society and consumers, and those looking to implement an accurate and effective risk analysis procedure that promotes the sustainable use of nanotechnology. Assesses both the positive and negative impacts of engineered nanomaterials in the environment Shows how engineered nanomaterials are used in agricultural environments, food products, drugs and cosmetics Discusses the unique properties of a range of engineered nanomaterials that lead to their environmental effects
The in vitro mammalian cell gene mutation test can be used to detect gene mutations induced by chemical substances. In this test, the used genetic endpoints measure mutation at hypoxanthine-guanine phosphoribosyl transferase (HPRT), and at a transgene of xanthineguanine phosphoribosyl ...