Download Free Immune Recognition And Evasion Molecular Aspects Of Host Parasite Interaction Book in PDF and EPUB Free Download. You can read online Immune Recognition And Evasion Molecular Aspects Of Host Parasite Interaction and write the review.

The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.
Immune Recognition and Evasion: Molecular Aspects of Host-Parasite Interaction reviews recent advances in understanding the genetic basis of host-parasite interactions, with emphasis on antigenic epitopes, the genetics of parasites, the molecular mechanisms of immune recognition and evasion, and the way that cytokines and hormones act on host-parasite interactions. Organized into four parts encompassing 25 chapters, this volume begins with an overview of the genomic organization of the T cell receptor genes and the contribution of non-B DNA structures to switch recombination in immunoglobulin genes. It then discusses signal transduction by class II molecules encoded by the major histocompatibility complex la and the biological consequences of this process; allelic polymorphism of HLA class II antigens and its connection to the molecular basis of autoimmunity; mimicry between HLAB27 and bacteria; and genetic control of susceptibility to helminth infection. The reader is also introduced to recognition of protein antigens by antibodies; recognition of influenza antigens by class I-restricted cytotoxic T lymphocytes; the biochemical basis of cachexia of infection; mechanisms of antigenic variation in Plasmodium; and rational design of trypanocidal drugs. Geneticists and molecular biologists will gain valuable information from this book.
Publisher Description
Multiple demographic or economic parameters contribute to the origin of emerging infections, for example: poverty, urbanization, climate change, conflicts and population migrations. All these factors are a challenge to assess the impact (present and future) of parasitic diseases on public health. The intestine is a major target of these infections; it is a nutrient-rich environment harbouring a complex and dynamic population of 100 trillion microbes: the microbiome. Most researches on the microbiome focus on bacteria, which share the gut ecosystem with a population of uni- and multi cellular eukaryotic organisms that may prey on them. Our interest focuses on the families of eukaryotic microbes inhabiting the intestine, called “intestinal eukaryome”, that include fungi, protists and helminths. Knowledge on the reciprocal influence between the microbiome and the eukaryome, and on their combined impact on homeostasis and intestinal diseases is scanty and can be considered as an important emerging field. Furthermore, the factors that differentiate pathogenic eukaryotes from commensals are still unknown. This book presents an overview of the science presented and discussed in the First Eukaryome Congress held from October 16th to 18th, 2019 at the Pasteur Institute in Paris. This book covers the following topics: Phylogenetic, prevalence, and diversity of intestinal eukaryotic microbes; and their (still enigmatic) historical evolution and potential contributions to mucosal immune homeostasis. Integrative biology to study the molecular cell biology of parasite-host interactions and the multiple parameters underlining the infectious process. The exploitation of tissue engineering and microfluidics to establish three-dimensional (3D) systems that help to understand homeostasis and pathological processes in the human intestine.
This is the first book on ranaviruses. Ranaviruses are double-stranded DNA viruses that cause hemorrhagic disease in amphibians, reptiles, and fish. They have caused mass die-offs of ectothermic vertebrates in wild and captive populations around the globe. There is evidence that this pathogen is emerging and responsible for population declines in certain locations. Considering that amphibians and freshwater turtles are suitable hosts and the most imperiled vertebrate taxa in the world, ranaviruses can have significant impacts on biodiversity and ecosystem function. Additionally, many fish that are raised in aquaculture facilities and traded internationally are suitable hosts; thus, the potential economic impact of ranaviruses is significant. Ranaviruses also serve as a model for replication and gene function of large double-stranded DNA viruses. There is an urgent need to assemble the contemporary information on ranaviruses and provide guidance on how to assess their threats in populations. Through the Global Ranavirus Consortium, 24 experts from six countries were organize to write this volume, the first book on ranaviruses. The book begins with a discussion on the global extent of ranaviruses, case histories of infection and disease in ectothermic vertebrates, and current phylogeny. Basic principles of ranavirus ecology and evolution are covered next, with a focus on host-pathogen interactions and how the virus emerges in its environment. There are two chapters that will discuss the molecular biology of ranaviruses, host response to infection, and the genes responsible for immune system evasion. One chapter establishes standards for testing for infection and diagnosing ranaviral disease. The book ends by providing guidance on how to design ranavirus surveillance studies and analyze data to determine risk, and discussing the role of the Global Ranavirus Consortium in organizing research and outreach activities.
Biology of Parasitism is based on the Biology of Parasitism Course at the Marine Biological Laboratory in Woods Hole, Massachusetts. Having just celebrated its 20th offering, this Course has distinguished itself as the premier, world-renowned training ground for future generations of parasitologists. The primary goal of the Course is to attract and introduce the very best and most promising young researchers to the many unresolved problems in parasitology and prepare them for their future as independent investigators in the field. The rigorous program combines state-of-the-art laboratory research with a program of visiting lecturers who bring together the most current research in the field. Since at this time there are no academic institutions that have enough depth in parasitology research or teaching faculty to provide up-to-date and state-of-the-art training, the Course has become, and will remain, a global resource for providing intensive education in modern parasitology. Biology of Parasitism is intended to present a snapshot of the content and spirit of the Biology of Parasitism Course. By presenting a series of chapters that reflect the formal lectures that students receive on a daily basis, as well as the approaches used during the laboratory section of the Course, the editors hope to share some of the science that occurs there. One part of the book presents the experimental component of the Course, in particular the subject matter of the four two-week sessions covering Immunology, Biochemistry, Cell Biology and Molecular Biology of protozoan and helminth parasites. As in the Course, the experimental part is complemented by a number of review-like chapters solicited from the large number of speakers who lecture during the Course.
This volume summarizes current research into the physiology and molecular biology of host-parasite interactions. Brought together by leading international experts in the field, the first section outlines fundamental processes, followed by specific examples in the concluding section. Covering a wide range of organisms, Host-Parasite Interactions is essential reading for researchers in the field.
Parasitoids lay their eggs on or in the bodies of other species of insect, and the parasitoid larvae develop by feeding on the host, causing its eventual death. Known for a long time to applied biologists for their importance in regulating the population densities of economic pests, parasitoids have recently proven to be valuable tools in testing many aspects of evolutionary theory. This book synthesizes the work of both schools of parasitoid biology and asks how a consideration of evolutionary biology can help us understand the behavior, ecology, and diversity of the approximately one to two million species of parasitoid found on earth. After a general introduction to parasitoid natural history and taxonomy, the first part of the book treats the different components of the reproductive strategy of parasitoids: searching for a host, host selection, clutch size, and the sex ratio. Subsequent chapters discuss pathogens and non-Mendelian genetic elements that affect sexual reproduction; evolutionary aspects of the physiological interactions between parasitoid and host; mating strategies; life history theory and community ecology. A special effort is made to discuss the theoretical background to the subject, but without the use of mathematics.