Download Free Image Statistics In Visual Computing Book in PDF and EPUB Free Download. You can read online Image Statistics In Visual Computing and write the review.

To achieve the complex task of interpreting what we see, our brains rely on statistical regularities and patterns in visual data. Knowledge of these regularities can also be considerably useful in visual computing disciplines, such as computer vision, computer graphics, and image processing. The field of natural image statistics studies the regularities to exploit their potential and better understand human vision. With numerous color figures throughout, Image Statistics in Visual Computing covers all aspects of natural image statistics, from data collection to analysis to applications in computer graphics, computational photography, image processing, and art. The authors keep the material accessible, providing mathematical definitions where appropriate to help readers understand the transforms that highlight statistical regularities present in images. The book also describes patterns that arise once the images are transformed and gives examples of applications that have successfully used statistical regularities. Numerous references enable readers to easily look up more information about a specific concept or application. A supporting website also offers additional information, including descriptions of various image databases suitable for statistics. Collecting state-of-the-art, interdisciplinary knowledge in one source, this book explores the relation of natural image statistics to human vision and shows how natural image statistics can be applied to visual computing. It encourages readers in both academic and industrial settings to develop novel insights and applications in all disciplines that relate to visual computing.
To achieve the complex task of interpreting what we see, our brains rely on statistical regularities and patterns in visual data. Knowledge of these regularities can also be considerably useful in visual computing disciplines, such as computer vision, computer graphics, and image processing. The field of natural image statistics studies the regular
Aims and Scope This book is both an introductory textbook and a research monograph on modeling the statistical structure of natural images. In very simple terms, “natural images” are photographs of the typical environment where we live. In this book, their statistical structure is described using a number of statistical models whose parameters are estimated from image samples. Our main motivation for exploring natural image statistics is computational m- eling of biological visual systems. A theoretical framework which is gaining more and more support considers the properties of the visual system to be re?ections of the statistical structure of natural images because of evolutionary adaptation processes. Another motivation for natural image statistics research is in computer science and engineering, where it helps in development of better image processing and computer vision methods. While research on natural image statistics has been growing rapidly since the mid-1990s, no attempt has been made to cover the ?eld in a single book, providing a uni?ed view of the different models and approaches. This book attempts to do just that. Furthermore, our aim is to provide an accessible introduction to the ?eld for students in related disciplines.
A visually intuitive approach to statistical data analysis Visual Statistics brings the most complex and advanced statistical methods within reach of those with little statistical training by using animated graphics of the data. Using ViSta: The Visual Statistics System-developed by Forrest Young and Pedro Valero-Mora and available free of charge on the Internet-students can easily create fully interactive visualizations from relevant mathematical statistics, promoting perceptual and cognitive understanding of the data's story. An emphasis is placed on a paradigm for understanding data that is visual, intuitive, geometric, and active, rather than one that relies on convoluted logic, heavy mathematics, systems of algebraic equations, or passive acceptance of results. A companion Web site complements the book by further demonstrating the concept of creating interactive and dynamic graphics. The book provides users with the opportunity to view the graphics in a dynamic way by illustrating how to analyze statistical data and explore the concepts of visual statistics. Visual Statistics addresses and features the following topics: * Why use dynamic graphics? * A history of statistical graphics * Visual statistics and the graphical user interface * Visual statistics and the scientific method * Character-based statistical interface objects * Graphics-based statistical interfaces * Visualization for exploring univariate data This is an excellent textbook for undergraduate courses in data analysis and regression, for students majoring or minoring in statistics, mathematics, science, engineering, and computer science, as well as for graduate-level courses in mathematics. The book is also ideal as a reference/self-study guide for engineers, scientists, and mathematicians. With contributions by highly regarded professionals in the field, Visual Statistics not only improves a student's understanding of statistics, but also builds confidence to overcome problems that may have previously been intimidating.
It is with greatpleasure that we present the proceedings of the 4th International Symposium on Visual Computing (ISVC 2008) in Las Vegas, Nevada. ISVC o?ers a common umbrella for the four main areas of visual computing including vision, graphics, visualization, and virtual reality. Its goal is to provide a forum for researchers, scientists, engineers and practitioners throughout the world to present their latest research ?ndings, ideas, developments and applications in the broader area of visual computing. This year,ISVC grew signi?cantly; the programconsisted of 15 oralsessions, 1 poster session, 8 special tracks, and 6 keynote presentations. The response to the call for papers was very strong; we received over 340 submissions for the main symposium from which we accepted 102 papers for oral presentation and 70 papers for poster presentation. Special track papers were solicited separately through the Organizing and Program Committees of each track. A total of 56 papers were accepted for oral presentation and 8 papers for poster presentation in the special tracks. All papers were reviewed with an emphasis on potential to contribute to the state of the art in the ?eld. Selection criteria included accuracy and originality of ideas, clarity and signi?cance of results, and presentation quality. The review process was quite rigorous, involving two to three independent blind reviews followed by several days of discussion. During the discussion period we tried to correct anomalies and errors that might have existed in the initial reviews.
This book provides an introduction to human visual perception suitable for readers studying or working in the fields of computer graphics and visualization, cognitive science, and visual neuroscience. It focuses on how computer graphics images are generated, rather than solely on the organization of the visual system itself; therefore, the text pro
Written for statisticians, computer scientists, geographers, research and applied scientists, and others interested in visualizing data, this book presents a unique foundation for producing almost every quantitative graphic found in scientific journals, newspapers, statistical packages, and data visualization systems. It was designed for a distributed computing environment, with special attention given to conserving computer code and system resources. While the tangible result of this work is a Java production graphics library, the text focuses on the deep structures involved in producing quantitative graphics from data. It investigates the rules that underlie pie charts, bar charts, scatterplots, function plots, maps, mosaics, and radar charts. These rules are abstracted from the work of Bertin, Cleveland, Kosslyn, MacEachren, Pinker, Tufte, Tukey, Tobler, and other theorists of quantitative graphics.
The two volume set LNCS 5875 and LNCS 5876 constitutes the refereed proceedings of the 5th International Symposium on Visual Computing, ISVC 2009, held in Las Vegas, NV, USA, in November/December 2009. The 97 revised full papers and 63 poster papers presented together with 40 full and 15 poster papers of 7 special tracks were carefully reviewed and selected from more than 320 submissions. The papers are organized in topical sections on computer graphics; visualization; feature extraction and matching; medical imaging; motion; virtual reality; face processing; reconstruction; detection and tracking; applications; and video analysis and event recognition. The 7 additional special tracks address issues such as object recognition; visual computing for robotics; computational bioimaging; 3D mapping, modeling and surface reconstruction; deformable models: theory and applications; visualization enhanced data analysis for health applications; and optimization for vision, graphics and medical imaging: theory and applications.
A cookbook of algorithms for common image processing applications Thanks to advances in computer hardware and software, algorithms have been developed that support sophisticated image processing without requiring an extensive background in mathematics. This bestselling book has been fully updated with the newest of these, including 2D vision methods in content-based searches and the use of graphics cards as image processing computational aids. It’s an ideal reference for software engineers and developers, advanced programmers, graphics programmers, scientists, and other specialists who require highly specialized image processing. Algorithms now exist for a wide variety of sophisticated image processing applications required by software engineers and developers, advanced programmers, graphics programmers, scientists, and related specialists This bestselling book has been completely updated to include the latest algorithms, including 2D vision methods in content-based searches, details on modern classifier methods, and graphics cards used as image processing computational aids Saves hours of mathematical calculating by using distributed processing and GPU programming, and gives non-mathematicians the shortcuts needed to program relatively sophisticated applications. Algorithms for Image Processing and Computer Vision, 2nd Edition provides the tools to speed development of image processing applications.
This textbook presents the main principles of visual analytics and describes techniques and approaches that have proven their utility and can be readily reproduced. Special emphasis is placed on various instructive examples of analyses, in which the need for and the use of visualisations are explained in detail. The book begins by introducing the main ideas and concepts of visual analytics and explaining why it should be considered an essential part of data science methodology and practices. It then describes the general principles underlying the visual analytics approaches, including those on appropriate visual representation, the use of interactive techniques, and classes of computational methods. It continues with discussing how to use visualisations for getting aware of data properties that need to be taken into account and for detecting possible data quality issues that may impair the analysis. The second part of the book describes visual analytics methods and workflows, organised by various data types including multidimensional data, data with spatial and temporal components, data describing binary relationships, texts, images and video. For each data type, the specific properties and issues are explained, the relevant analysis tasks are discussed, and appropriate methods and procedures are introduced. The focus here is not on the micro-level details of how the methods work, but on how the methods can be used and how they can be applied to data. The limitations of the methods are also discussed and possible pitfalls are identified. The textbook is intended for students in data science and, more generally, anyone doing or planning to do practical data analysis. It includes numerous examples demonstrating how visual analytics techniques are used and how they can help analysts to understand the properties of data, gain insights into the subject reflected in the data, and build good models that can be trusted. Based on several years of teaching related courses at the City, University of London, the University of Bonn and TU Munich, as well as industry training at the Fraunhofer Institute IAIS and numerous summer schools, the main content is complemented by sample datasets and detailed, illustrated descriptions of exercises to practice applying visual analytics methods and workflows.