Download Free Image Recovery Theory And Application Book in PDF and EPUB Free Download. You can read online Image Recovery Theory And Application and write the review.

Image Recovery: Theory and Application focuses on signal recovery and synthesis problems. This book discusses the concepts of image recovery, including regularization, the projection theorem, and the pseudoinverse operator. Comprised of 13 chapters, this volume begins with a review of the basic properties of linear vector spaces and associated operators, followed by a discussion on the Gerchberg-Papoulis algorithm. It then explores image restoration and the basic mathematical theory in image restoration problems. The reader is also introduced to the problem of obtaining artifact-free computed tomographic reconstruction. Other chapters consider the importance of Bayesian approach in the context of medical imaging. In addition, the book discusses the linear programming method, which is particularly important for images with large number of pixels with zero value. Such images are usually found in medical imaging, microscopy, electron microscopy, and astronomy. This book can be a valuable resource to materials scientists, engineers, computed tomography technologists, and astronomers.
Blind image deconvolution is constantly receiving increasing attention from the academic as well the industrial world due to both its theoretical and practical implications. The field of blind image deconvolution has several applications in different areas such as image restoration, microscopy, medical imaging, biological imaging, remote sensing, astronomy, nondestructive testing, geophysical prospecting, and many others. Blind Image Deconvolution: Theory and Applications surveys the current state of research and practice as presented by the most recognized experts in the field, thus filling a gap in the available literature on blind image deconvolution. Explore the gamut of blind image deconvolution approaches and algorithms that currently exist and follow the current research trends into the future. This comprehensive treatise discusses Bayesian techniques, single- and multi-channel methods, adaptive and multi-frame techniques, and a host of applications to multimedia processing, astronomy, remote sensing imagery, and medical and biological imaging at the whole-body, small-part, and cellular levels. Everything you need to step into this dynamic field is at your fingertips in this unique, self-contained masterwork. For image enhancement and restoration without a priori information, turn to Blind Image Deconvolution: Theory and Applications for the knowledge and techniques you need to tackle real-world problems.
This book was first published in 2004. In many applications, images, such as ultrasonic or X-ray signals, are recorded and then analyzed with digital or optical processors in order to extract information. Such processing requires the development of algorithms of great precision and sophistication. This book presents a unified treatment of the mathematical methods that underpin the various algorithms used in remote image formation. The author begins with a review of transform and filter theory. He then discusses two- and three-dimensional Fourier transform theory, the ambiguity function, image construction and reconstruction, tomography, baseband surveillance systems, and passive systems (where the signal source might be an earthquake or a galaxy). Information-theoretic methods in image formation are also covered, as are phase errors and phase noise. Throughout the book, practical applications illustrate theoretical concepts, and there are many homework problems. The book is aimed at graduate students of electrical engineering and computer science, and practitioners in industry.
Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Continuation order customers for either of the original Advances will receiveVolume 90, the first combined volume.
This book includes seminal papers on technical subjects—transport theory, invariant imbedding, and integral equations—presented as contributions to honour George Milt Wing in celebration of his 65th birth anniversary in 1988.
Proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods, Santa Fe, New Mexico, USA, 1995
This unique resource details the theory, working methods, and applications of electron tomographic techniques for imaging asymmetric, noncrystalline biological specimens.
Fully updated throughout and with several new chapters, this second edition of Introduction to Inverse Problems in Imaging guides advanced undergraduate and graduate students in physics, computer science, mathematics and engineering through the principles of linear inverse problems, in addition to methods of their approximate solution and their practical applications in imaging. This second edition contains new chapters on edge-preserving and sparsity-enforcing regularization in addition to maximum likelihood methods and Bayesian regularization for Poisson data. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of students from different backgrounds, with readers needing just a rudimentary understanding of analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms, and this second edition is accompanied by numerical examples throughout. It will provide readers with the appropriate background needed for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems. Key features: Provides an accessible introduction to the topic while keeping mathematics to a minimum Interdisciplinary topic with growing relevance and wide-ranging applications Accompanied by numerical examples throughout
Computers have become an integral part of medical imaging systems and are used for everything from data acquisition and image generation to image display and analysis. As the scope and complexity of imaging technology steadily increase, more advanced techniques are required to solve the emerging challenges. Biomedical Image Analysis demonstr
This contributed volume contains articles written by the plenary and invited speakers from the second international MATHEON Workshop 2015 that focus on applications of compressed sensing. Article authors address their techniques for solving the problems of compressed sensing, as well as connections to related areas like detecting community-like structures in graphs, curbatures on Grassmanians, and randomized tensor train singular value decompositions. Some of the novel applications covered include dimensionality reduction, information theory, random matrices, sparse approximation, and sparse recovery. This book is aimed at both graduate students and researchers in the areas of applied mathematics, computer science, and engineering, as well as other applied scientists exploring the potential applications for the novel methodology of compressed sensing. An introduction to the subject of compressed sensing is also provided for researchers interested in the field who are not as familiar with it.